非各向同性散射环境下的改进信道模型

Zhu Qiu-ming, Xu Dazhuan, Chen Xiaomin
{"title":"非各向同性散射环境下的改进信道模型","authors":"Zhu Qiu-ming, Xu Dazhuan, Chen Xiaomin","doi":"10.1109/WCSP.2009.5371442","DOIUrl":null,"url":null,"abstract":"A modified sum-of-sinusoids (SoS) channel model for two-dimensional (2-D) non-isotropic scattering environments is presented, which be applied on any single-path channel based on equal probability areas of the angle of arrival (AoA) and can be generalized to multi-path channels. Its performance can be improved using principle of set partitioning. The auto-correlation function (ACF) of our model is close to the ACF of the reference model, and better than traditional models.","PeriodicalId":244652,"journal":{"name":"2009 International Conference on Wireless Communications & Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modified channel model for non-isotropic scattering enviroments\",\"authors\":\"Zhu Qiu-ming, Xu Dazhuan, Chen Xiaomin\",\"doi\":\"10.1109/WCSP.2009.5371442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified sum-of-sinusoids (SoS) channel model for two-dimensional (2-D) non-isotropic scattering environments is presented, which be applied on any single-path channel based on equal probability areas of the angle of arrival (AoA) and can be generalized to multi-path channels. Its performance can be improved using principle of set partitioning. The auto-correlation function (ACF) of our model is close to the ACF of the reference model, and better than traditional models.\",\"PeriodicalId\":244652,\"journal\":{\"name\":\"2009 International Conference on Wireless Communications & Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wireless Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2009.5371442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2009.5371442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种改进的二维非各向同性散射环境下的正弦波和(SoS)信道模型,该模型基于到达角(AoA)的等概率区域,可应用于任意单路径信道,并可推广到多路径信道。利用集合划分原理可以提高其性能。模型的自相关函数(ACF)接近参考模型的ACF,优于传统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified channel model for non-isotropic scattering enviroments
A modified sum-of-sinusoids (SoS) channel model for two-dimensional (2-D) non-isotropic scattering environments is presented, which be applied on any single-path channel based on equal probability areas of the angle of arrival (AoA) and can be generalized to multi-path channels. Its performance can be improved using principle of set partitioning. The auto-correlation function (ACF) of our model is close to the ACF of the reference model, and better than traditional models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信