基于离群值感知的时间复用MAC的cnn高能效算法

Eunji Kwon, Yesung Kang, Seokhyeong Kang
{"title":"基于离群值感知的时间复用MAC的cnn高能效算法","authors":"Eunji Kwon, Yesung Kang, Seokhyeong Kang","doi":"10.1109/ISOCC47750.2019.9027750","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) are computationally intensive, and deep learning hardware should be implemented energy-efficiently for embedded systems or battery-constrained systems. In this paper, we propose an outlier-aware time-multiplexing MAC. We exploit a CNN feature maps' characteristic of being able to express most of the data in a low bit-width except a few large values, which we call ‘outliers' Our outlier-aware time-multiplexing MAC has improved the energy efficiency by up to 21.1% compared to conventional MACs.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outlier-aware Time-multiplexing MAC for Higher Energy-Efficiency on CNNs\",\"authors\":\"Eunji Kwon, Yesung Kang, Seokhyeong Kang\",\"doi\":\"10.1109/ISOCC47750.2019.9027750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) are computationally intensive, and deep learning hardware should be implemented energy-efficiently for embedded systems or battery-constrained systems. In this paper, we propose an outlier-aware time-multiplexing MAC. We exploit a CNN feature maps' characteristic of being able to express most of the data in a low bit-width except a few large values, which we call ‘outliers' Our outlier-aware time-multiplexing MAC has improved the energy efficiency by up to 21.1% compared to conventional MACs.\",\"PeriodicalId\":113802,\"journal\":{\"name\":\"2019 International SoC Design Conference (ISOCC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC47750.2019.9027750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9027750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)是计算密集型的,深度学习硬件应该在嵌入式系统或电池受限的系统中实现节能。在本文中,我们提出了一种异常值感知时间复用MAC。我们利用CNN特征映射的特点,即能够以低位宽表达除少数大值(我们称之为“异常值”)之外的大部分数据。与传统MAC相比,我们的异常值感知时间复用MAC的能效提高了21.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier-aware Time-multiplexing MAC for Higher Energy-Efficiency on CNNs
Convolutional neural networks (CNNs) are computationally intensive, and deep learning hardware should be implemented energy-efficiently for embedded systems or battery-constrained systems. In this paper, we propose an outlier-aware time-multiplexing MAC. We exploit a CNN feature maps' characteristic of being able to express most of the data in a low bit-width except a few large values, which we call ‘outliers' Our outlier-aware time-multiplexing MAC has improved the energy efficiency by up to 21.1% compared to conventional MACs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信