使用深度学习方法的分布式拒绝服务攻击检测

Meenakshi, Krishan Kumar, Sunny Behal
{"title":"使用深度学习方法的分布式拒绝服务攻击检测","authors":"Meenakshi, Krishan Kumar, Sunny Behal","doi":"10.1109/INDIACom51348.2021.00087","DOIUrl":null,"url":null,"abstract":"In this paper, the Deep Learning based approaches (Convolutional Neural Network and variants of Recurrent Neural Networks, i.e. Long Short-Term Memory, Bidirectional Long Short-Term Memory, Stacked Long Short-Term Memory and Gated Recurrent Units) have been used to detect Distributed Denial of Service (DDoS) attacks. The Deep Learning approaches have been evaluated using the Portmap.csv file of recent DDoS dataset, i.e. CICDDoS2019. Before giving input to the Deep Learning approaches, the data is pre-processed. The Deep Learning approaches are trained and tested using the pre-processed dataset. The reporting results show that RNN based Stacked-LSTM Deep Learning approach produces the best results in detecting Portmap DDoS attack in comparison to other Deep Learning based algorithms.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed Denial of Service Attack Detection using Deep Learning Approaches\",\"authors\":\"Meenakshi, Krishan Kumar, Sunny Behal\",\"doi\":\"10.1109/INDIACom51348.2021.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Deep Learning based approaches (Convolutional Neural Network and variants of Recurrent Neural Networks, i.e. Long Short-Term Memory, Bidirectional Long Short-Term Memory, Stacked Long Short-Term Memory and Gated Recurrent Units) have been used to detect Distributed Denial of Service (DDoS) attacks. The Deep Learning approaches have been evaluated using the Portmap.csv file of recent DDoS dataset, i.e. CICDDoS2019. Before giving input to the Deep Learning approaches, the data is pre-processed. The Deep Learning approaches are trained and tested using the pre-processed dataset. The reporting results show that RNN based Stacked-LSTM Deep Learning approach produces the best results in detecting Portmap DDoS attack in comparison to other Deep Learning based algorithms.\",\"PeriodicalId\":415594,\"journal\":{\"name\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIACom51348.2021.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,基于深度学习的方法(卷积神经网络和递归神经网络的变体,即长短期记忆,双向长短期记忆,堆叠长短期记忆和门控递归单元)已被用于检测分布式拒绝服务(DDoS)攻击。使用最近的DDoS数据集(即CICDDoS2019)的Portmap.csv文件对深度学习方法进行了评估。在输入深度学习方法之前,数据要进行预处理。深度学习方法使用预处理数据集进行训练和测试。报告结果表明,与其他基于深度学习的算法相比,基于RNN的stack - lstm深度学习方法在检测Portmap DDoS攻击方面产生了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Denial of Service Attack Detection using Deep Learning Approaches
In this paper, the Deep Learning based approaches (Convolutional Neural Network and variants of Recurrent Neural Networks, i.e. Long Short-Term Memory, Bidirectional Long Short-Term Memory, Stacked Long Short-Term Memory and Gated Recurrent Units) have been used to detect Distributed Denial of Service (DDoS) attacks. The Deep Learning approaches have been evaluated using the Portmap.csv file of recent DDoS dataset, i.e. CICDDoS2019. Before giving input to the Deep Learning approaches, the data is pre-processed. The Deep Learning approaches are trained and tested using the pre-processed dataset. The reporting results show that RNN based Stacked-LSTM Deep Learning approach produces the best results in detecting Portmap DDoS attack in comparison to other Deep Learning based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信