基于质心神经网络的面部表情识别

Dong-Chul Park, H. Thuy, Dong-Min Woo, Yunsik Lee
{"title":"基于质心神经网络的面部表情识别","authors":"Dong-Chul Park, H. Thuy, Dong-Min Woo, Yunsik Lee","doi":"10.1109/CYBERC.2010.94","DOIUrl":null,"url":null,"abstract":"A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Facial Expression Using Centroid Neural Network\",\"authors\":\"Dong-Chul Park, H. Thuy, Dong-Min Woo, Yunsik Lee\",\"doi\":\"10.1109/CYBERC.2010.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.\",\"PeriodicalId\":315132,\"journal\":{\"name\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2010.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种从静态图像中识别面部表情的新方法。采用局部二值模式(LBP)算子作为人脸图像数据的有效特征提取工具。然后使用无监督竞争神经网络(x2距离度量质心神经网络CNN-x2)作为LBP算子对人脸图像数据得到的直方图数据的分类工具。将该识别方案应用于JAFFE数据库,并与几种传统的面部表情识别方法进行了比较。结果表明,该方法在识别精度上优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Facial Expression Using Centroid Neural Network
A novel approach to recognize facial expressions from static images is proposed in this paper. The local binary pattern (LBP) operator is adopted as an effective feature extraction tool for facial image data. An unsupervised competitive neural network, called a centroid neural network with x2 distance measure, CNN-x2, is then utilized as the classification tool for the histogram data obtained by the LBP operator on facial image data. The proposed recognition scheme is applied to the JAFFE database and compared with several conventional approaches to facial expression recognition problems. The results show that the proposed recognition scheme compares favorably with conventional approaches in terms of recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信