数学表达式的句法角色识别

Xing Wang, Jason Lin, Ryan Vrecenar, Jyh-Charn S. Liu
{"title":"数学表达式的句法角色识别","authors":"Xing Wang, Jason Lin, Ryan Vrecenar, Jyh-Charn S. Liu","doi":"10.1109/ICDIM.2017.8244676","DOIUrl":null,"url":null,"abstract":"This paper presents a prediction algorithm to infer the syntactic role (SR) of mathematical expressions (ME), or SRme, in ME-plaintext mixed sentences. SRme is a predicted syntax label of ME, which could be integrated into any constituent parser to improve their accuracy in sentence parsing. SRME is based upon three features of ME placement in a sentence: properness of Sentence structure (feature F3), properties of ME (feature F2), and PoS of the Local neighbor plain text (feature F1). An inside-outside inspired algorithm is proposed for SRME by maximizing the probability of a relaxed parsing tree. Features in F2 was found to fit into both exponential and Poisson distributions, which could fuse with other features to re-weight the prediction rule that improves the prediction precision for SRme as a noun phrase (noun modifier) by 3.6% (18.7%). F1, F2, and F3 were found to complement each other. Significant discriminative patterns on the part-of-speech (PoS) of the neighbor plaintext are adopted to build a Naïve Bayesian classifier, which is fused with the F3 baseline that improved the precision of the prediction of SRme as a sentence by 10%. The overall error rate of the SRME prediction algorithm was found to be 15.1% based on an experiment using a public ME-plaintext mixed parsing tree data set provided by Elsevier.","PeriodicalId":144953,"journal":{"name":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Syntactic role identification of mathematical expressions\",\"authors\":\"Xing Wang, Jason Lin, Ryan Vrecenar, Jyh-Charn S. Liu\",\"doi\":\"10.1109/ICDIM.2017.8244676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a prediction algorithm to infer the syntactic role (SR) of mathematical expressions (ME), or SRme, in ME-plaintext mixed sentences. SRme is a predicted syntax label of ME, which could be integrated into any constituent parser to improve their accuracy in sentence parsing. SRME is based upon three features of ME placement in a sentence: properness of Sentence structure (feature F3), properties of ME (feature F2), and PoS of the Local neighbor plain text (feature F1). An inside-outside inspired algorithm is proposed for SRME by maximizing the probability of a relaxed parsing tree. Features in F2 was found to fit into both exponential and Poisson distributions, which could fuse with other features to re-weight the prediction rule that improves the prediction precision for SRme as a noun phrase (noun modifier) by 3.6% (18.7%). F1, F2, and F3 were found to complement each other. Significant discriminative patterns on the part-of-speech (PoS) of the neighbor plaintext are adopted to build a Naïve Bayesian classifier, which is fused with the F3 baseline that improved the precision of the prediction of SRme as a sentence by 10%. The overall error rate of the SRME prediction algorithm was found to be 15.1% based on an experiment using a public ME-plaintext mixed parsing tree data set provided by Elsevier.\",\"PeriodicalId\":144953,\"journal\":{\"name\":\"2017 Twelfth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Twelfth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2017.8244676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Twelfth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2017.8244676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种预测算法来推断数学表达式(ME)在ME-明文混合句子中的句法作用(SR)。SRme是ME的预测语法标签,可以将其集成到任何组成解析器中,以提高句子解析的准确性。SRME基于ME在句子中放置的三个特征:句子结构的正确性(特征F3)、ME的属性(特征F2)和Local neighbor plain text的PoS(特征F1)。通过最大化松弛解析树的概率,提出了一种由内向外启发的SRME算法。F2中的特征同时符合指数分布和泊松分布,可以与其他特征融合重新加权预测规则,将SRme作为名词短语(名词修饰语)的预测精度提高3.6%(18.7%)。发现F1、F2和F3是互补的。利用相邻明文词性的显著判别模式构建Naïve贝叶斯分类器,将其与F3基线融合,将SRme作为句子的预测精度提高10%。利用Elsevier提供的公开的me -明文混合解析树数据集进行实验,发现SRME预测算法的总体错误率为15.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syntactic role identification of mathematical expressions
This paper presents a prediction algorithm to infer the syntactic role (SR) of mathematical expressions (ME), or SRme, in ME-plaintext mixed sentences. SRme is a predicted syntax label of ME, which could be integrated into any constituent parser to improve their accuracy in sentence parsing. SRME is based upon three features of ME placement in a sentence: properness of Sentence structure (feature F3), properties of ME (feature F2), and PoS of the Local neighbor plain text (feature F1). An inside-outside inspired algorithm is proposed for SRME by maximizing the probability of a relaxed parsing tree. Features in F2 was found to fit into both exponential and Poisson distributions, which could fuse with other features to re-weight the prediction rule that improves the prediction precision for SRme as a noun phrase (noun modifier) by 3.6% (18.7%). F1, F2, and F3 were found to complement each other. Significant discriminative patterns on the part-of-speech (PoS) of the neighbor plaintext are adopted to build a Naïve Bayesian classifier, which is fused with the F3 baseline that improved the precision of the prediction of SRme as a sentence by 10%. The overall error rate of the SRME prediction algorithm was found to be 15.1% based on an experiment using a public ME-plaintext mixed parsing tree data set provided by Elsevier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信