内波

K. Raghukumar, Craig Jones, Grace Chang, Jesse Roberts
{"title":"内波","authors":"K. Raghukumar, Craig Jones, Grace Chang, Jesse Roberts","doi":"10.36688/ewtec-2023-159","DOIUrl":null,"url":null,"abstract":"Internal waves are ubiquitous oceanographic features that occur in various forms across the world’s oceans. They manifest themselves as interface waves across ocean density layers that represent the interplay between buoyancy and gravitational forces, and are typically classified as linear and nonlinear internal waves. Nonlinear internal waves are characterized by isopycnal displacements that can exceed 30 m, and current velocities that approach 1 m/s. Internal wave energy converters, if developed, could have the advantage of no surface expression and provide for the availability of renewable ocean energy in regions of scant surface wave energy resources. \nHere, internal wave energies were computed at two locations: the New Jersey continental shelf and the coast of Central California. The available energy resource calculated for internal waves was then compared against surface gravity wave resources at each of these locations. Results suggest that the internal wave energy flux is comparable to that of surface waves on the New Jersey continental shelf during the summer of 2006 but is two orders of magnitude lower than that of surface waves in Central California during the summer of 2017. When expressed in terms of forces on a cylindrical structure, internal wave forces are an order of magnitude lower than that of surface waves on identically sized cylinders. However, the forces of the two resources are comparable when the diameter of the cylinder is doubled for the internal wave calculations. This suggests that while a larger energy converter would be required to harness internal wave energy, the larger size could be a reasonable tradeoff for advantages such as the lack of surface expression and the availability of energy in regions of limited surface wave energy resources. \nThese results could potentially pave the way for longer-time scale characterization of internal waves and the development of devices to harness this energy resource (thereby powering the Blue Economy), while augmenting the portfolio of marine renewable energy resources. Further, the dominance of internal wave energy resources during summer seasons when the water column is stratified can augment the surface wave energy resource that can be diminished during the summer season.","PeriodicalId":201789,"journal":{"name":"Proceedings of the European Wave and Tidal Energy Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Internal waves\",\"authors\":\"K. Raghukumar, Craig Jones, Grace Chang, Jesse Roberts\",\"doi\":\"10.36688/ewtec-2023-159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal waves are ubiquitous oceanographic features that occur in various forms across the world’s oceans. They manifest themselves as interface waves across ocean density layers that represent the interplay between buoyancy and gravitational forces, and are typically classified as linear and nonlinear internal waves. Nonlinear internal waves are characterized by isopycnal displacements that can exceed 30 m, and current velocities that approach 1 m/s. Internal wave energy converters, if developed, could have the advantage of no surface expression and provide for the availability of renewable ocean energy in regions of scant surface wave energy resources. \\nHere, internal wave energies were computed at two locations: the New Jersey continental shelf and the coast of Central California. The available energy resource calculated for internal waves was then compared against surface gravity wave resources at each of these locations. Results suggest that the internal wave energy flux is comparable to that of surface waves on the New Jersey continental shelf during the summer of 2006 but is two orders of magnitude lower than that of surface waves in Central California during the summer of 2017. When expressed in terms of forces on a cylindrical structure, internal wave forces are an order of magnitude lower than that of surface waves on identically sized cylinders. However, the forces of the two resources are comparable when the diameter of the cylinder is doubled for the internal wave calculations. This suggests that while a larger energy converter would be required to harness internal wave energy, the larger size could be a reasonable tradeoff for advantages such as the lack of surface expression and the availability of energy in regions of limited surface wave energy resources. \\nThese results could potentially pave the way for longer-time scale characterization of internal waves and the development of devices to harness this energy resource (thereby powering the Blue Economy), while augmenting the portfolio of marine renewable energy resources. Further, the dominance of internal wave energy resources during summer seasons when the water column is stratified can augment the surface wave energy resource that can be diminished during the summer season.\",\"PeriodicalId\":201789,\"journal\":{\"name\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the European Wave and Tidal Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36688/ewtec-2023-159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the European Wave and Tidal Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/ewtec-2023-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

内波是普遍存在的海洋学特征,以各种形式出现在世界海洋中。它们表现为跨越海洋密度层的界面波,代表浮力和重力之间的相互作用,通常分为线性和非线性内波。非线性内波的特点是等轴位移可以超过30米,电流速度接近1米/秒。如果开发出内波能转换器,将具有不需要表面表达的优点,并为表面波能资源匮乏的地区提供可再生海洋能源。在这里,计算了两个地点的内波能量:新泽西大陆架和加利福尼亚中部海岸。然后将计算得到的内波可用能量与每个位置的表面重力波资源进行比较。结果表明,2006年夏季新泽西大陆架的内波能量通量与表面波相当,但比2017年夏季加利福尼亚中部的表面波能量通量低两个数量级。当用作用在圆柱结构上的力来表示时,内波力比相同尺寸圆柱体上的表面波力低一个数量级。然而,当圆柱直径加倍计算内波时,两种资源的力是相当的。这表明,虽然需要更大的能量转换器来利用内波能量,但更大的尺寸可能是一个合理的权衡,例如缺乏表面表达和有限表面波能量资源区域的能量可用性。这些结果可能为内波的长时间表征和利用这种能源的设备的开发(从而为蓝色经济提供动力)铺平道路,同时增加海洋可再生能源的组合。此外,当夏季水柱分层时,内部波能资源的优势可以增加夏季可以减少的表面波能资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal waves
Internal waves are ubiquitous oceanographic features that occur in various forms across the world’s oceans. They manifest themselves as interface waves across ocean density layers that represent the interplay between buoyancy and gravitational forces, and are typically classified as linear and nonlinear internal waves. Nonlinear internal waves are characterized by isopycnal displacements that can exceed 30 m, and current velocities that approach 1 m/s. Internal wave energy converters, if developed, could have the advantage of no surface expression and provide for the availability of renewable ocean energy in regions of scant surface wave energy resources. Here, internal wave energies were computed at two locations: the New Jersey continental shelf and the coast of Central California. The available energy resource calculated for internal waves was then compared against surface gravity wave resources at each of these locations. Results suggest that the internal wave energy flux is comparable to that of surface waves on the New Jersey continental shelf during the summer of 2006 but is two orders of magnitude lower than that of surface waves in Central California during the summer of 2017. When expressed in terms of forces on a cylindrical structure, internal wave forces are an order of magnitude lower than that of surface waves on identically sized cylinders. However, the forces of the two resources are comparable when the diameter of the cylinder is doubled for the internal wave calculations. This suggests that while a larger energy converter would be required to harness internal wave energy, the larger size could be a reasonable tradeoff for advantages such as the lack of surface expression and the availability of energy in regions of limited surface wave energy resources. These results could potentially pave the way for longer-time scale characterization of internal waves and the development of devices to harness this energy resource (thereby powering the Blue Economy), while augmenting the portfolio of marine renewable energy resources. Further, the dominance of internal wave energy resources during summer seasons when the water column is stratified can augment the surface wave energy resource that can be diminished during the summer season.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信