Garry Jean-Pierre, S. Beheshtaein, N. Altin, A. Nasiri
{"title":"基于固态变压器的直流极快充电器的控制与损耗分析","authors":"Garry Jean-Pierre, S. Beheshtaein, N. Altin, A. Nasiri","doi":"10.1109/ITEC51675.2021.9490062","DOIUrl":null,"url":null,"abstract":"The increasing demand for electric vehicles, due to advantages such as higher energy efficiency, lower fuel costs, and less vehicle maintenance, is expected to drive the need for electric vehicle charging infrastructure. Due to their reduced size and weight, high power and scalable compact solid state transformers (SST) are growing in popularity. This study presents the total loss analysis and control design for a direct grid connected single-phase SST for a fast charging station. A control strategy to achieve robust current control, DC voltage and power balancing, and power loss minimization (PLM) is implemented for this system. Detailed analyses and simulation results obtained from MATLAB/Simulink are given to prove the effectiveness of the proposed control techniques.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control and Loss Analysis of a Solid State Transformer Based DC Extreme Fast Charger\",\"authors\":\"Garry Jean-Pierre, S. Beheshtaein, N. Altin, A. Nasiri\",\"doi\":\"10.1109/ITEC51675.2021.9490062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for electric vehicles, due to advantages such as higher energy efficiency, lower fuel costs, and less vehicle maintenance, is expected to drive the need for electric vehicle charging infrastructure. Due to their reduced size and weight, high power and scalable compact solid state transformers (SST) are growing in popularity. This study presents the total loss analysis and control design for a direct grid connected single-phase SST for a fast charging station. A control strategy to achieve robust current control, DC voltage and power balancing, and power loss minimization (PLM) is implemented for this system. Detailed analyses and simulation results obtained from MATLAB/Simulink are given to prove the effectiveness of the proposed control techniques.\",\"PeriodicalId\":339989,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC51675.2021.9490062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control and Loss Analysis of a Solid State Transformer Based DC Extreme Fast Charger
The increasing demand for electric vehicles, due to advantages such as higher energy efficiency, lower fuel costs, and less vehicle maintenance, is expected to drive the need for electric vehicle charging infrastructure. Due to their reduced size and weight, high power and scalable compact solid state transformers (SST) are growing in popularity. This study presents the total loss analysis and control design for a direct grid connected single-phase SST for a fast charging station. A control strategy to achieve robust current control, DC voltage and power balancing, and power loss minimization (PLM) is implemented for this system. Detailed analyses and simulation results obtained from MATLAB/Simulink are given to prove the effectiveness of the proposed control techniques.