mooc学生反思情绪与问题解决过程分析

Alexander Shashkov, Robert S. Gold, Erik Hemberg, ByeongJo Kong, Ana Bell, Una-May O’Reilly
{"title":"mooc学生反思情绪与问题解决过程分析","authors":"Alexander Shashkov, Robert S. Gold, Erik Hemberg, ByeongJo Kong, Ana Bell, Una-May O’Reilly","doi":"10.1145/3430895.3460150","DOIUrl":null,"url":null,"abstract":"Student reflection is thought to be an important part of retaining and understanding knowledge gained in a course. Using natural language processing, we analyze and interpret student reflections from Massive Open Online Courses (MOOCs) to understand the students' sentiments and problem-solving procedures. The reflections are free text responses to questions from MIT 6.00.1x, an introductory programming MOOC. We compare different sentiment analysis methods, and conclude that the best-performing methods can robustly classify sentiment of student responses. In addition, we develop methods to analyze student problem-solving procedures using sentence parsing and topic modeling. We find our method can distinguish some common problem-solving procedures such as utilizing course resources.","PeriodicalId":125581,"journal":{"name":"Proceedings of the Eighth ACM Conference on Learning @ Scale","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analyzing Student Reflection Sentiments and Problem-Solving Procedures in MOOCs\",\"authors\":\"Alexander Shashkov, Robert S. Gold, Erik Hemberg, ByeongJo Kong, Ana Bell, Una-May O’Reilly\",\"doi\":\"10.1145/3430895.3460150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student reflection is thought to be an important part of retaining and understanding knowledge gained in a course. Using natural language processing, we analyze and interpret student reflections from Massive Open Online Courses (MOOCs) to understand the students' sentiments and problem-solving procedures. The reflections are free text responses to questions from MIT 6.00.1x, an introductory programming MOOC. We compare different sentiment analysis methods, and conclude that the best-performing methods can robustly classify sentiment of student responses. In addition, we develop methods to analyze student problem-solving procedures using sentence parsing and topic modeling. We find our method can distinguish some common problem-solving procedures such as utilizing course resources.\",\"PeriodicalId\":125581,\"journal\":{\"name\":\"Proceedings of the Eighth ACM Conference on Learning @ Scale\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430895.3460150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430895.3460150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

学生反思被认为是保留和理解课程知识的重要组成部分。使用自然语言处理,我们分析和解释大规模在线开放课程(MOOCs)学生的反思,以了解学生的情绪和解决问题的过程。这些反思是对MIT 6.00.01 x(一门入门级编程MOOC)问题的自由文本回答。我们比较了不同的情绪分析方法,并得出结论,表现最好的方法可以稳健地分类学生反应的情绪。此外,我们还开发了使用句子解析和主题建模来分析学生问题解决过程的方法。我们发现我们的方法可以区分一些常见的问题解决过程,如利用课程资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Student Reflection Sentiments and Problem-Solving Procedures in MOOCs
Student reflection is thought to be an important part of retaining and understanding knowledge gained in a course. Using natural language processing, we analyze and interpret student reflections from Massive Open Online Courses (MOOCs) to understand the students' sentiments and problem-solving procedures. The reflections are free text responses to questions from MIT 6.00.1x, an introductory programming MOOC. We compare different sentiment analysis methods, and conclude that the best-performing methods can robustly classify sentiment of student responses. In addition, we develop methods to analyze student problem-solving procedures using sentence parsing and topic modeling. We find our method can distinguish some common problem-solving procedures such as utilizing course resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信