在非线性优化和玻尔兹曼采样框架下的gpgpu加速模拟量子退火

Dan Padilha, Serge Weinstock, Mark Hodson
{"title":"在非线性优化和玻尔兹曼采样框架下的gpgpu加速模拟量子退火","authors":"Dan Padilha, Serge Weinstock, Mark Hodson","doi":"10.1109/HPEC.2019.8916450","DOIUrl":null,"url":null,"abstract":"We introduce QxSQA, a GPGPU-Accelerated Simulated Quantum Annealer based on Path-Integral Monte Carlo (PIMC). QxSQA is tuned for finding low-energy solutions to integer, non-linear optimization problems of up to 214 (16,384) binary variables with quadratic interactions on a single GPU instance. Experimental results demonstrate QxSQA can solve Maximum Clique test problems of 8,100 binary variables with planted solutions in under one minute, with linear scaling against key optimization parameters on other large-scale problems. Through the PIMC formulation, QxSQA also functions as an accurate sampler of Boltzmann distributions for machine learning applications. Experimental characterization of Boltzmann sampling results for a reinforcement learning problem showed good convergence performance at useful scales. Our implementation integrates as a solver within our QxBranch developer platform, positioning developers to efficiently develop applications using QxSQA, and then test the same application code on a quantum annealer or universal quantum computer hardware platform such as those from D-Wave Systems, IBM, or Rigetti Computing.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QxSQA: GPGPU-Accelerated Simulated Quantum Annealer within a Non-Linear Optimization and Boltzmann Sampling Framework\",\"authors\":\"Dan Padilha, Serge Weinstock, Mark Hodson\",\"doi\":\"10.1109/HPEC.2019.8916450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce QxSQA, a GPGPU-Accelerated Simulated Quantum Annealer based on Path-Integral Monte Carlo (PIMC). QxSQA is tuned for finding low-energy solutions to integer, non-linear optimization problems of up to 214 (16,384) binary variables with quadratic interactions on a single GPU instance. Experimental results demonstrate QxSQA can solve Maximum Clique test problems of 8,100 binary variables with planted solutions in under one minute, with linear scaling against key optimization parameters on other large-scale problems. Through the PIMC formulation, QxSQA also functions as an accurate sampler of Boltzmann distributions for machine learning applications. Experimental characterization of Boltzmann sampling results for a reinforcement learning problem showed good convergence performance at useful scales. Our implementation integrates as a solver within our QxBranch developer platform, positioning developers to efficiently develop applications using QxSQA, and then test the same application code on a quantum annealer or universal quantum computer hardware platform such as those from D-Wave Systems, IBM, or Rigetti Computing.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了一种基于路径积分蒙特卡罗(PIMC)的gpgpu加速模拟量子退火算法QxSQA。QxSQA用于在单个GPU实例上查找具有二次交互的多达214(16,384)个二进制变量的整数、非线性优化问题的低能量解决方案。实验结果表明,QxSQA可以在1分钟内解决8100个二元变量的最大团测试问题,并在其他大规模问题上对关键优化参数进行线性缩放。通过PIMC公式,QxSQA还可以作为机器学习应用中玻尔兹曼分布的精确采样器。对强化学习问题的玻尔兹曼采样结果的实验表征表明,在有用尺度上具有良好的收敛性能。我们的实现集成为QxBranch开发平台中的求解器,使开发人员能够使用QxSQA高效地开发应用程序,然后在量子退核器或通用量子计算机硬件平台(如D-Wave Systems、IBM或Rigetti Computing)上测试相同的应用程序代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QxSQA: GPGPU-Accelerated Simulated Quantum Annealer within a Non-Linear Optimization and Boltzmann Sampling Framework
We introduce QxSQA, a GPGPU-Accelerated Simulated Quantum Annealer based on Path-Integral Monte Carlo (PIMC). QxSQA is tuned for finding low-energy solutions to integer, non-linear optimization problems of up to 214 (16,384) binary variables with quadratic interactions on a single GPU instance. Experimental results demonstrate QxSQA can solve Maximum Clique test problems of 8,100 binary variables with planted solutions in under one minute, with linear scaling against key optimization parameters on other large-scale problems. Through the PIMC formulation, QxSQA also functions as an accurate sampler of Boltzmann distributions for machine learning applications. Experimental characterization of Boltzmann sampling results for a reinforcement learning problem showed good convergence performance at useful scales. Our implementation integrates as a solver within our QxBranch developer platform, positioning developers to efficiently develop applications using QxSQA, and then test the same application code on a quantum annealer or universal quantum computer hardware platform such as those from D-Wave Systems, IBM, or Rigetti Computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信