类似:使用深度学习从UI设计模式生成UI线框图

Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, M. Jarke
{"title":"类似:使用深度学习从UI设计模式生成UI线框图","authors":"Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, M. Jarke","doi":"10.1145/3397482.3450727","DOIUrl":null,"url":null,"abstract":"During the User interface (UI) design process, designers use UI design patterns for conceptualizing different UI wireframes for an application. This paper introduces Akin, a UI wireframe generator that allows designers to chose a UI design pattern and provides them with multiple UI wireframes for a given UI design pattern. Akin uses a fine-tuned Self-Attention Generative Adversarial Network trained with 500 UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s generative model provides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance of 297.19. We further conducted user studies with 15 UI/UX designers to evaluate the quality of Akin-generated UI wireframes. The results show that UI/UX designers considered wireframes generated by Akin are as good as wireframes made by designers. Moreover, designers identified Akin-generated wireframes as designer-made 50% of the time. This paper provides a baseline for further research in UI wireframe generation by providing a baseline metric.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Akin: Generating UI Wireframes From UI Design Patterns Using Deep Learning\",\"authors\":\"Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, M. Jarke\",\"doi\":\"10.1145/3397482.3450727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the User interface (UI) design process, designers use UI design patterns for conceptualizing different UI wireframes for an application. This paper introduces Akin, a UI wireframe generator that allows designers to chose a UI design pattern and provides them with multiple UI wireframes for a given UI design pattern. Akin uses a fine-tuned Self-Attention Generative Adversarial Network trained with 500 UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s generative model provides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance of 297.19. We further conducted user studies with 15 UI/UX designers to evaluate the quality of Akin-generated UI wireframes. The results show that UI/UX designers considered wireframes generated by Akin are as good as wireframes made by designers. Moreover, designers identified Akin-generated wireframes as designer-made 50% of the time. This paper provides a baseline for further research in UI wireframe generation by providing a baseline metric.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在用户界面(UI)设计过程中,设计人员使用UI设计模式对应用程序的不同UI线框进行概念化。本文介绍了一个UI线框生成器Akin,它允许设计师选择一个UI设计模式,并为给定的UI设计模式提供多个UI线框。Akin使用了一个经过微调的自注意生成对抗网络,该网络由5种android UI设计模式的500个UI线框图训练而成。经评估,Akin的生成模型的Inception Score为1.63 (SD=0.34), fr Inception Distance为297.19。我们进一步与15名UI/UX设计师进行了用户研究,以评估akin生成的UI线框的质量。结果表明,UI/UX设计师认为由Akin生成的线框图与设计师制作的线框图一样好。此外,设计师在50%的时间里将akin生成的线框识别为设计师制作的。本文通过提供一个基线度量,为进一步研究UI线框生成提供了一个基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Akin: Generating UI Wireframes From UI Design Patterns Using Deep Learning
During the User interface (UI) design process, designers use UI design patterns for conceptualizing different UI wireframes for an application. This paper introduces Akin, a UI wireframe generator that allows designers to chose a UI design pattern and provides them with multiple UI wireframes for a given UI design pattern. Akin uses a fine-tuned Self-Attention Generative Adversarial Network trained with 500 UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s generative model provides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance of 297.19. We further conducted user studies with 15 UI/UX designers to evaluate the quality of Akin-generated UI wireframes. The results show that UI/UX designers considered wireframes generated by Akin are as good as wireframes made by designers. Moreover, designers identified Akin-generated wireframes as designer-made 50% of the time. This paper provides a baseline for further research in UI wireframe generation by providing a baseline metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信