{"title":"提高超声造影光流对肝局灶性病变的诊断价值","authors":"Cristina Laura Sîrbu, G. Simion, C. Căleanu","doi":"10.1109/SYNASC57785.2022.00048","DOIUrl":null,"url":null,"abstract":"Our proposal aims an automatic method used for obtaining the ultrasound image of a region of interest based on the optical flow computation. Combined with a kernel correlation filter tracking algorithm and a Xception deep convolutional neural network architecture, our solution provides state-of-the-art results (over 90% accuracy) in the automatic diagnosis of liver lesion using contrast enhanced ultrasound.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Diagnostic of Contrast Enhanced Ultrasound Imaging using Optical Flow for Focal Liver Lesion Detection\",\"authors\":\"Cristina Laura Sîrbu, G. Simion, C. Căleanu\",\"doi\":\"10.1109/SYNASC57785.2022.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our proposal aims an automatic method used for obtaining the ultrasound image of a region of interest based on the optical flow computation. Combined with a kernel correlation filter tracking algorithm and a Xception deep convolutional neural network architecture, our solution provides state-of-the-art results (over 90% accuracy) in the automatic diagnosis of liver lesion using contrast enhanced ultrasound.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Diagnostic of Contrast Enhanced Ultrasound Imaging using Optical Flow for Focal Liver Lesion Detection
Our proposal aims an automatic method used for obtaining the ultrasound image of a region of interest based on the optical flow computation. Combined with a kernel correlation filter tracking algorithm and a Xception deep convolutional neural network architecture, our solution provides state-of-the-art results (over 90% accuracy) in the automatic diagnosis of liver lesion using contrast enhanced ultrasound.