时变密度泛函理论的算子牛顿迭代收敛

J. Jerome
{"title":"时变密度泛函理论的算子牛顿迭代收敛","authors":"J. Jerome","doi":"10.1109/IWCE.2015.7301967","DOIUrl":null,"url":null,"abstract":"In a recent publication, the author has established the existence of a unique weak solution of the initial/boundaryvalue problem for a closed quantum system modeled by time dependent density function theory (TDDFT). We describe a Newton iteration, based upon the technique used to prove (unique) existence for the TDDFT model.We show that successive approximation at the operator level, based upon the evolution operator, is sufficient to obtain a `starting iterate' for Newton's method. We discuss the so-called quadratic convergence associated with Newton's method. In the process, we obtain a Kantorovich type theorem for TDDFT.","PeriodicalId":165023,"journal":{"name":"2015 International Workshop on Computational Electronics (IWCE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator newton iterative convergence for time dependent density functional theory\",\"authors\":\"J. Jerome\",\"doi\":\"10.1109/IWCE.2015.7301967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent publication, the author has established the existence of a unique weak solution of the initial/boundaryvalue problem for a closed quantum system modeled by time dependent density function theory (TDDFT). We describe a Newton iteration, based upon the technique used to prove (unique) existence for the TDDFT model.We show that successive approximation at the operator level, based upon the evolution operator, is sufficient to obtain a `starting iterate' for Newton's method. We discuss the so-called quadratic convergence associated with Newton's method. In the process, we obtain a Kantorovich type theorem for TDDFT.\",\"PeriodicalId\":165023,\"journal\":{\"name\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2015.7301967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2015.7301967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,作者建立了由时间依赖密度函数理论(TDDFT)建模的封闭量子系统的初始/边值问题的唯一弱解的存在性。我们描述了一个牛顿迭代,基于用于证明TDDFT模型(唯一)存在的技术。我们证明了基于演化算子的算子级逐次逼近足以获得牛顿方法的“起始迭代”。我们讨论了牛顿法的二次收敛性。在此过程中,我们得到了TDDFT的一个Kantorovich型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator newton iterative convergence for time dependent density functional theory
In a recent publication, the author has established the existence of a unique weak solution of the initial/boundaryvalue problem for a closed quantum system modeled by time dependent density function theory (TDDFT). We describe a Newton iteration, based upon the technique used to prove (unique) existence for the TDDFT model.We show that successive approximation at the operator level, based upon the evolution operator, is sufficient to obtain a `starting iterate' for Newton's method. We discuss the so-called quadratic convergence associated with Newton's method. In the process, we obtain a Kantorovich type theorem for TDDFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信