RDF数据集的高性能、分布式字典编码

Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo
{"title":"RDF数据集的高性能、分布式字典编码","authors":"Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo","doi":"10.1109/CLUSTER.2015.44","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Performance, Distributed Dictionary Encoding of RDF Datasets\",\"authors\":\"Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo\",\"doi\":\"10.1109/CLUSTER.2015.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种新的RDF(资源描述框架)字典编码方法,该方法采用并行RDF解析器和分布式字典数据结构,利用特定于RDF的优化。与以前的解决方案相比,这种方法利用了结合活动消息的分区全局地址空间(Partitioned Global Address Space, PGAS)编程模型。我们在RDF数据库GEMS(多线程系统图引擎)中评估了字典编码器的性能,并提供了与以前方法的经验比较。我们的比较表明,与目前的技术相比,我们的字典编码器的可伸缩性更好,性能也更高,为实现更高效的RDF数据库提供了一个关键元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Performance, Distributed Dictionary Encoding of RDF Datasets
In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信