Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo
{"title":"RDF数据集的高性能、分布式字典编码","authors":"Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo","doi":"10.1109/CLUSTER.2015.44","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Performance, Distributed Dictionary Encoding of RDF Datasets\",\"authors\":\"Alessandro Morari, Jesse Weaver, Oreste Villa, D. Haglin, Antonino Tumeo, Vito Giovanni Castellana, J. Feo\",\"doi\":\"10.1109/CLUSTER.2015.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.\",\"PeriodicalId\":187042,\"journal\":{\"name\":\"2015 IEEE International Conference on Cluster Computing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTER.2015.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在这项工作中,我们提出了一种新的RDF(资源描述框架)字典编码方法,该方法采用并行RDF解析器和分布式字典数据结构,利用特定于RDF的优化。与以前的解决方案相比,这种方法利用了结合活动消息的分区全局地址空间(Partitioned Global Address Space, PGAS)编程模型。我们在RDF数据库GEMS(多线程系统图引擎)中评估了字典编码器的性能,并提供了与以前方法的经验比较。我们的比较表明,与目前的技术相比,我们的字典编码器的可伸缩性更好,性能也更高,为实现更高效的RDF数据库提供了一个关键元素。
High-Performance, Distributed Dictionary Encoding of RDF Datasets
In this work we propose a novel approach for RDF (Resource Description Framework) dictionary encoding that employs a parallel RDF parser and a distributed dictionary data structure, exploiting RDF-specific optimizations. In contrast with previous solutions, this approach exploits the Partitioned Global Address Space (PGAS) programming model combined with active messages. We evaluate the performance of our dictionary encoder in our RDF database, GEMS (Graph Engine for Multithreaded Systems), and provide an empirical comparison against previous approaches. Our comparison shows that our dictionary encoder scales significantly better and achieves higher performance than the current state of the art, providing a key element for the realization of a more efficient RDF database.