斑点缺陷建模:过去和发展

M. Renovell
{"title":"斑点缺陷建模:过去和发展","authors":"M. Renovell","doi":"10.1109/DTIS.2017.7930163","DOIUrl":null,"url":null,"abstract":"With today manufacturing technology, it is not possible to eliminate all defects and ensure every manufactured unit is perfect. Instead, each manufactured unit must be tested so that defective parts are not shipped to a customer. Different Test Strategies are commonly used since none is considered as optimal in terms of low defect level. Most companies use some but not all of the following three Test Strategies: the Static Voltage strategy, the Dynamic Voltage or Delay strategy, the Static or Dynamic Current (I_DDX) strategy. While using different approaches, these different test strategies have a common objective: reveal the presence in the chip of defects or deviations that may create a dysfunction. Knowing the complexity of today defects, it is admitted that the classical fault models used for test generation cannot guarantee a satisfactory detection of defects. This implies that new test generation technique specifically oriented to defects have to be defined. So, we must analyze and understand the electrical behavior of the defect and describe its behavior through an adequate ‘defect model’. Then, defect simulation techniques and defect-oriented ATPG techniques must be proposed to allow specific test generation for these defects. This presentation focuses on spot defects that manifest themselves as shorts or opens in the interconnect or in the MOS transistors: ‘Interconnect open’, ‘Interconnect short’, ‘Floating gate’, and ‘Gate-Oxide-Short’ are analyzed in detail using different model levels. For every defect, it is shown that the electrical behavior is in fact not predictable due to the presence of random parameters. In order to tackle the problem of unpredictability, unified concepts are proposed that allow new test generation techniques guaranteeing coverage of unpredictable defects.","PeriodicalId":328905,"journal":{"name":"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spot defect modeling: Past and evolution\",\"authors\":\"M. Renovell\",\"doi\":\"10.1109/DTIS.2017.7930163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With today manufacturing technology, it is not possible to eliminate all defects and ensure every manufactured unit is perfect. Instead, each manufactured unit must be tested so that defective parts are not shipped to a customer. Different Test Strategies are commonly used since none is considered as optimal in terms of low defect level. Most companies use some but not all of the following three Test Strategies: the Static Voltage strategy, the Dynamic Voltage or Delay strategy, the Static or Dynamic Current (I_DDX) strategy. While using different approaches, these different test strategies have a common objective: reveal the presence in the chip of defects or deviations that may create a dysfunction. Knowing the complexity of today defects, it is admitted that the classical fault models used for test generation cannot guarantee a satisfactory detection of defects. This implies that new test generation technique specifically oriented to defects have to be defined. So, we must analyze and understand the electrical behavior of the defect and describe its behavior through an adequate ‘defect model’. Then, defect simulation techniques and defect-oriented ATPG techniques must be proposed to allow specific test generation for these defects. This presentation focuses on spot defects that manifest themselves as shorts or opens in the interconnect or in the MOS transistors: ‘Interconnect open’, ‘Interconnect short’, ‘Floating gate’, and ‘Gate-Oxide-Short’ are analyzed in detail using different model levels. For every defect, it is shown that the electrical behavior is in fact not predictable due to the presence of random parameters. In order to tackle the problem of unpredictability, unified concepts are proposed that allow new test generation techniques guaranteeing coverage of unpredictable defects.\",\"PeriodicalId\":328905,\"journal\":{\"name\":\"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS.2017.7930163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2017.7930163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以今天的制造技术,不可能消除所有的缺陷,并确保每一个制造单位是完美的。相反,每个制造的部件都必须经过测试,这样有缺陷的部件就不会被运送给客户。通常使用不同的测试策略,因为就低缺陷水平而言,没有一个被认为是最优的。大多数公司使用以下三种测试策略:静态电压策略,动态电压或延迟策略,静态或动态电流(I_DDX)策略。虽然使用不同的方法,但这些不同的测试策略有一个共同的目标:揭示芯片中可能产生功能障碍的缺陷或偏差的存在。认识到当今缺陷的复杂性,人们承认用于测试生成的经典故障模型不能保证令人满意的缺陷检测。这意味着必须定义专门针对缺陷的新测试生成技术。因此,我们必须分析和理解缺陷的电气行为,并通过适当的“缺陷模型”描述其行为。然后,必须提出缺陷模拟技术和面向缺陷的ATPG技术,以便对这些缺陷进行特定的测试生成。本次演讲的重点是在互连或MOS晶体管中表现为短路或打开的点缺陷:使用不同的模型级别详细分析了“互连打开”,“互连短”,“浮栅”和“栅氧化短”。对于每一个缺陷,由于随机参数的存在,电学行为实际上是不可预测的。为了解决不可预测的问题,提出了统一的概念,允许新的测试生成技术保证不可预测缺陷的覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spot defect modeling: Past and evolution
With today manufacturing technology, it is not possible to eliminate all defects and ensure every manufactured unit is perfect. Instead, each manufactured unit must be tested so that defective parts are not shipped to a customer. Different Test Strategies are commonly used since none is considered as optimal in terms of low defect level. Most companies use some but not all of the following three Test Strategies: the Static Voltage strategy, the Dynamic Voltage or Delay strategy, the Static or Dynamic Current (I_DDX) strategy. While using different approaches, these different test strategies have a common objective: reveal the presence in the chip of defects or deviations that may create a dysfunction. Knowing the complexity of today defects, it is admitted that the classical fault models used for test generation cannot guarantee a satisfactory detection of defects. This implies that new test generation technique specifically oriented to defects have to be defined. So, we must analyze and understand the electrical behavior of the defect and describe its behavior through an adequate ‘defect model’. Then, defect simulation techniques and defect-oriented ATPG techniques must be proposed to allow specific test generation for these defects. This presentation focuses on spot defects that manifest themselves as shorts or opens in the interconnect or in the MOS transistors: ‘Interconnect open’, ‘Interconnect short’, ‘Floating gate’, and ‘Gate-Oxide-Short’ are analyzed in detail using different model levels. For every defect, it is shown that the electrical behavior is in fact not predictable due to the presence of random parameters. In order to tackle the problem of unpredictability, unified concepts are proposed that allow new test generation techniques guaranteeing coverage of unpredictable defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信