一种基于查询扩展和PageRank检查的重排序方法

Taehwan Kim, Hochul Jeon, Joongmin Choi
{"title":"一种基于查询扩展和PageRank检查的重排序方法","authors":"Taehwan Kim, Hochul Jeon, Joongmin Choi","doi":"10.3745/KIPSTB.2011.18B.4.231","DOIUrl":null,"url":null,"abstract":"Many search algorithms have been implemented by many researchers on the world wide web. One of the best algorithms is Google using PageRank technology. PageRank approach computes the number of inlink of each documents then ranks documents in the order of inlink members. But it is difficult to find the results that user needs, because this method find documents not valueable for a person but valueable for the public. To solve this problem, We use the WordNet for analysis of the user`s query history. This paper proposes a personalized search engine using the user`s query history and PageRank Check. We compared the performance of the proposed approaches with google search results in the top 30. As a result, the average of the r-precision for the proposed approaches is about 60% and it is better as about 14%.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reranking Method Using Query Expansion and PageRank Check\",\"authors\":\"Taehwan Kim, Hochul Jeon, Joongmin Choi\",\"doi\":\"10.3745/KIPSTB.2011.18B.4.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many search algorithms have been implemented by many researchers on the world wide web. One of the best algorithms is Google using PageRank technology. PageRank approach computes the number of inlink of each documents then ranks documents in the order of inlink members. But it is difficult to find the results that user needs, because this method find documents not valueable for a person but valueable for the public. To solve this problem, We use the WordNet for analysis of the user`s query history. This paper proposes a personalized search engine using the user`s query history and PageRank Check. We compared the performance of the proposed approaches with google search results in the top 30. As a result, the average of the r-precision for the proposed approaches is about 60% and it is better as about 14%.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2011.18B.4.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.4.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究人员已经在万维网上实现了许多搜索算法。最好的算法之一是使用PageRank技术的谷歌。PageRank方法计算每个文档的链接数,然后按照链接成员的顺序对文档进行排序。但是很难找到用户需要的结果,因为这种方法找到的文件不是对个人有价值的,而是对公众有价值的。为了解决这个问题,我们使用WordNet对用户的查询历史进行分析。本文提出了一种基于用户查询历史和PageRank检查的个性化搜索引擎。我们将提出的方法的性能与排名前30位的谷歌搜索结果进行了比较。结果表明,所提方法的r-精度平均值约为60%,较好为14%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reranking Method Using Query Expansion and PageRank Check
Many search algorithms have been implemented by many researchers on the world wide web. One of the best algorithms is Google using PageRank technology. PageRank approach computes the number of inlink of each documents then ranks documents in the order of inlink members. But it is difficult to find the results that user needs, because this method find documents not valueable for a person but valueable for the public. To solve this problem, We use the WordNet for analysis of the user`s query history. This paper proposes a personalized search engine using the user`s query history and PageRank Check. We compared the performance of the proposed approaches with google search results in the top 30. As a result, the average of the r-precision for the proposed approaches is about 60% and it is better as about 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信