基于判别公共向量的面部表情识别

Yuan-Kai Wang, Chun-Hao Huang
{"title":"基于判别公共向量的面部表情识别","authors":"Yuan-Kai Wang, Chun-Hao Huang","doi":"10.1109/IIH-MSP.2007.403","DOIUrl":null,"url":null,"abstract":"Extracting stable features from face images is very important for automatic recognition of facial expression. In this paper, we apply a face feature extraction approach, namely discriminative common vectors, for the recognition of the six expressions including happy, sad, angry, disgust, fear and surprise. By applying discriminative common vector, we can reduce the dimensionality of image feature and classify them in a lower dimension. Then we use HMM as our classifier to find the time series information of the feature vector projected by common vector. Experimental results on the Cohn-Kanade database demonstrate the validity and efficiency of our approach.","PeriodicalId":385132,"journal":{"name":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facial Expression Recognition with Discriminative Common Vector\",\"authors\":\"Yuan-Kai Wang, Chun-Hao Huang\",\"doi\":\"10.1109/IIH-MSP.2007.403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting stable features from face images is very important for automatic recognition of facial expression. In this paper, we apply a face feature extraction approach, namely discriminative common vectors, for the recognition of the six expressions including happy, sad, angry, disgust, fear and surprise. By applying discriminative common vector, we can reduce the dimensionality of image feature and classify them in a lower dimension. Then we use HMM as our classifier to find the time series information of the feature vector projected by common vector. Experimental results on the Cohn-Kanade database demonstrate the validity and efficiency of our approach.\",\"PeriodicalId\":385132,\"journal\":{\"name\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIH-MSP.2007.403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2007.403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从人脸图像中提取稳定特征是人脸表情自动识别的重要内容。本文采用一种人脸特征提取方法,即判别公共向量,对快乐、悲伤、愤怒、厌恶、恐惧和惊讶六种表情进行识别。利用判别公共向量,将图像特征降维,在较低的维度上进行分类。然后利用隐马尔可夫模型作为分类器,寻找由公共向量投影的特征向量的时间序列信息。在Cohn-Kanade数据库上的实验结果证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Expression Recognition with Discriminative Common Vector
Extracting stable features from face images is very important for automatic recognition of facial expression. In this paper, we apply a face feature extraction approach, namely discriminative common vectors, for the recognition of the six expressions including happy, sad, angry, disgust, fear and surprise. By applying discriminative common vector, we can reduce the dimensionality of image feature and classify them in a lower dimension. Then we use HMM as our classifier to find the time series information of the feature vector projected by common vector. Experimental results on the Cohn-Kanade database demonstrate the validity and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信