噪声和动态过渡

Grant Lythe
{"title":"噪声和动态过渡","authors":"Grant Lythe","doi":"10.1017/cbo9780511526213.012","DOIUrl":null,"url":null,"abstract":"A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise and dynamic transitions\",\"authors\":\"Grant Lythe\",\"doi\":\"10.1017/cbo9780511526213.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/cbo9780511526213.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cbo9780511526213.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对分岔参数超过临界值缓慢增大时的抛物型随机偏微分方程进行了解析和数值研究。目的是了解噪声对具有空间自由度系统的延迟分岔的影响。当分岔参数超过其临界值后,非自治随机偏微分方程的实现在不稳定位形附近停留很长时间,然后跳跃到一个新的位形。非线性的作用是在临界值附近由噪声形成的空间结构中冻结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise and dynamic transitions
A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信