{"title":"噪声和动态过渡","authors":"Grant Lythe","doi":"10.1017/cbo9780511526213.012","DOIUrl":null,"url":null,"abstract":"A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise and dynamic transitions\",\"authors\":\"Grant Lythe\",\"doi\":\"10.1017/cbo9780511526213.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/cbo9780511526213.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cbo9780511526213.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A parabolic stochastic PDE is studied analytically and numerically, when a bifurcation parameter is slowly increased through its critical value. The aim is to understand the effect of noise on delayed bifurcations in systems with spatial degrees of freedom. Realisations of the nonautonomous stochastic PDE remain near the unstable configuration for a long time after the bifurcation parameter passes through its critical value, then jump to a new configuration. The effect of the nonlinearity is to freeze in the spatial structure formed from the noise near the critical value.