代码:分布移位下的代码模型泛化

Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon
{"title":"代码:分布移位下的代码模型泛化","authors":"Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon","doi":"10.1109/ICSE-NIER58687.2023.00007","DOIUrl":null,"url":null,"abstract":"Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although DL has been becoming a driving force for large-scale source code analysis in the big code era, limited progress has been made on distribution shift analysis and benchmarking for source code tasks. To fill this gap, this paper initiates to propose CodeS, a distribution shift benchmark dataset, for source code learning. Specifically, CodeS supports two programming languages (Java and Python) and five shift types (task, programmer, time-stamp, token, and concrete syntax tree). Extensive experiments based on CodeS reveal that 1) out-of-distribution detectors from other domains (e.g., computer vision) do not generalize to source code, 2) all code classification models suffer from distribution shifts, 3) representation-based shifts have a higher impact on the model than others, and 4) pretrained bimodal models are relatively more resistant to distribution shifts.","PeriodicalId":297025,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CodeS: Towards Code Model Generalization Under Distribution Shift\",\"authors\":\"Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, Yves Le Traon\",\"doi\":\"10.1109/ICSE-NIER58687.2023.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although DL has been becoming a driving force for large-scale source code analysis in the big code era, limited progress has been made on distribution shift analysis and benchmarking for source code tasks. To fill this gap, this paper initiates to propose CodeS, a distribution shift benchmark dataset, for source code learning. Specifically, CodeS supports two programming languages (Java and Python) and five shift types (task, programmer, time-stamp, token, and concrete syntax tree). Extensive experiments based on CodeS reveal that 1) out-of-distribution detectors from other domains (e.g., computer vision) do not generalize to source code, 2) all code classification models suffer from distribution shifts, 3) representation-based shifts have a higher impact on the model than others, and 4) pretrained bimodal models are relatively more resistant to distribution shifts.\",\"PeriodicalId\":297025,\"journal\":{\"name\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-NIER58687.2023.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER58687.2023.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于意想不到的精度下降,分布转移一直是深度学习(DL)模型可靠部署的一个长期挑战。虽然深度学习已经成为大代码时代大规模源代码分析的推动力,但在源代码任务的分布转移分析和基准测试方面进展有限。为了填补这一空白,本文提出了用于源代码学习的分布位移基准数据集CodeS。具体来说,CodeS支持两种编程语言(Java和Python)和五种转换类型(任务、程序员、时间戳、令牌和具体语法树)。基于CodeS的大量实验表明,1)来自其他领域(如计算机视觉)的分布外检测器不能推广到源代码,2)所有代码分类模型都受到分布移位的影响,3)基于表示的移位对模型的影响比其他的更大,4)预训练的双峰模型相对更能抵抗分布移位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CodeS: Towards Code Model Generalization Under Distribution Shift
Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although DL has been becoming a driving force for large-scale source code analysis in the big code era, limited progress has been made on distribution shift analysis and benchmarking for source code tasks. To fill this gap, this paper initiates to propose CodeS, a distribution shift benchmark dataset, for source code learning. Specifically, CodeS supports two programming languages (Java and Python) and five shift types (task, programmer, time-stamp, token, and concrete syntax tree). Extensive experiments based on CodeS reveal that 1) out-of-distribution detectors from other domains (e.g., computer vision) do not generalize to source code, 2) all code classification models suffer from distribution shifts, 3) representation-based shifts have a higher impact on the model than others, and 4) pretrained bimodal models are relatively more resistant to distribution shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信