河外考古中恒星人口-运动分布重建的预测Nesterov-Kaczmarz方法

Fabian Hinterer, Simon Hubmer, P. Jethwa, Kirk M. Soodhalter, G. Ven, R. Ramlau
{"title":"河外考古中恒星人口-运动分布重建的预测Nesterov-Kaczmarz方法","authors":"Fabian Hinterer, Simon Hubmer, P. Jethwa, Kirk M. Soodhalter, G. Ven, R. Ramlau","doi":"10.48550/arXiv.2206.03925","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of reconstructing a galaxy's stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov-Kaczmarz reconstruction (PNKR) method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and non-negativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A projected Nesterov-Kaczmarz approach to stellar population-kinematic distribution reconstruction in Extragalactic Archaeology\",\"authors\":\"Fabian Hinterer, Simon Hubmer, P. Jethwa, Kirk M. Soodhalter, G. Ven, R. Ramlau\",\"doi\":\"10.48550/arXiv.2206.03925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of reconstructing a galaxy's stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov-Kaczmarz reconstruction (PNKR) method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and non-negativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.03925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.03925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑从光学积分场单位测量中重建星系恒星群-运动分布函数的问题。这些量通过一个高维积分方程联系起来。为了解决这一问题,我们提出了一种投影Nesterov-Kaczmarz重构(PNKR)方法,该方法有效地利用了问题的结构,并结合了平滑性和非负性约束等物理先验信息。为了测试我们的重建方法的性能,我们将其应用于已知地面真值密度模拟的数据集,并通过将我们的恢复与广泛使用的pPXF软件获得的恢复进行比较来验证它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A projected Nesterov-Kaczmarz approach to stellar population-kinematic distribution reconstruction in Extragalactic Archaeology
In this paper, we consider the problem of reconstructing a galaxy's stellar population-kinematic distribution function from optical integral field unit measurements. These quantities are connected via a high-dimensional integral equation. To solve this problem, we propose a projected Nesterov-Kaczmarz reconstruction (PNKR) method, which efficiently leverages the problem structure and incorporates physical prior information such as smoothness and non-negativity constraints. To test the performance of our reconstruction approach, we apply it to a dataset simulated from a known ground truth density, and validate it by comparing our recoveries to those obtained by the widely used pPXF software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信