基于人工神经网络反演的红霉素发酵生化参数软测量

X. Dai, Dongchuan Yu, Yuhan Ding, Wancheng Wang
{"title":"基于人工神经网络反演的红霉素发酵生化参数软测量","authors":"X. Dai, Dongchuan Yu, Yuhan Ding, Wancheng Wang","doi":"10.1109/ICIA.2004.1373365","DOIUrl":null,"url":null,"abstract":"This paper presents a novel soft-sensing approach based on artificial neural network (ANN) inversion to estimate some crucial biochemical parameters in erythromycin fermentation, which usually can not be directly measurable by commercial sensors. Such direct-unmeasurable variables as mycelia concentration, sugar concentration and chemical potency, can be derived from other direct-measurable variables such as dissolved oxygen concentration, pH, and volume by using the proposed ANN inversion. The ANN inversion consists of a static ANN and several differentiators and acts as a soft-sensor. Experimental results show that the soft-sensing values are almost identical with the actual ones and the proposed method would be helpful for the real-time control of the biochemical fermentation.","PeriodicalId":297178,"journal":{"name":"International Conference on Information Acquisition, 2004. Proceedings.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANN inversion based soft-sensing of biochemical parameters in erythromycin fermentation\",\"authors\":\"X. Dai, Dongchuan Yu, Yuhan Ding, Wancheng Wang\",\"doi\":\"10.1109/ICIA.2004.1373365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel soft-sensing approach based on artificial neural network (ANN) inversion to estimate some crucial biochemical parameters in erythromycin fermentation, which usually can not be directly measurable by commercial sensors. Such direct-unmeasurable variables as mycelia concentration, sugar concentration and chemical potency, can be derived from other direct-measurable variables such as dissolved oxygen concentration, pH, and volume by using the proposed ANN inversion. The ANN inversion consists of a static ANN and several differentiators and acts as a soft-sensor. Experimental results show that the soft-sensing values are almost identical with the actual ones and the proposed method would be helpful for the real-time control of the biochemical fermentation.\",\"PeriodicalId\":297178,\"journal\":{\"name\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2004.1373365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Acquisition, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2004.1373365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于人工神经网络(ANN)反演的软测量方法,用于红霉素发酵过程中一些关键生化参数的估计,这些参数通常是商用传感器无法直接测量的。菌丝浓度、糖浓度和化学效价等直接不可测量的变量,可以通过本文提出的人工神经网络反演从溶解氧浓度、pH和体积等其他直接可测量的变量中推导出来。人工神经网络反演由静态人工神经网络和多个微分器组成,并作为软传感器。实验结果表明,软测量值与实际值基本一致,该方法有助于生化发酵过程的实时控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN inversion based soft-sensing of biochemical parameters in erythromycin fermentation
This paper presents a novel soft-sensing approach based on artificial neural network (ANN) inversion to estimate some crucial biochemical parameters in erythromycin fermentation, which usually can not be directly measurable by commercial sensors. Such direct-unmeasurable variables as mycelia concentration, sugar concentration and chemical potency, can be derived from other direct-measurable variables such as dissolved oxygen concentration, pH, and volume by using the proposed ANN inversion. The ANN inversion consists of a static ANN and several differentiators and acts as a soft-sensor. Experimental results show that the soft-sensing values are almost identical with the actual ones and the proposed method would be helpful for the real-time control of the biochemical fermentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信