托卡马克注入颗粒形成ITBs过程中的等离子体不稳定性

P. Klaywittaphat, T. Onjun, R. Picha, J. Promping, B. Chatthong
{"title":"托卡马克注入颗粒形成ITBs过程中的等离子体不稳定性","authors":"P. Klaywittaphat, T. Onjun, R. Picha, J. Promping, B. Chatthong","doi":"10.55164/ajstr.v25i4.247569","DOIUrl":null,"url":null,"abstract":"JET H-mode plasma discharge 53212 simulation during the pellet fueling operation in the presence of an internal transport barrier is carried out using the 1.5D BALDUR integrated predictive modelling code. The plasma instability during ITB formation with pellet injection in a tokamak is investigated. These simulations use a neoclassical transport model and an anomalous transport model (either multimode or mixed Bohm/gyro-Bohm core transport model). The boundary condition is described at the top of the pedestal, which is calculated theoretically based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient model. The toroidal flow calculation is based on the neoclassical viscosity toroidal velocity model. It was found that the shallower pellet does not destroy the ITB, which locating mainly between r/a = 0.8 and 0.9. Moreover, in the plasma center region (0.4<r/a<0.6) the effective electron thermal diffusivities do not change during the ablation time. However, the effective electron thermal diffusivities decrease after pellet ablation, which means a shallower pellet can improve the internal transport barrier.","PeriodicalId":426475,"journal":{"name":"ASEAN Journal of Scientific and Technological Reports","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma Instability During ITBs Formation with Pellet Injection in Tokamak\",\"authors\":\"P. Klaywittaphat, T. Onjun, R. Picha, J. Promping, B. Chatthong\",\"doi\":\"10.55164/ajstr.v25i4.247569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"JET H-mode plasma discharge 53212 simulation during the pellet fueling operation in the presence of an internal transport barrier is carried out using the 1.5D BALDUR integrated predictive modelling code. The plasma instability during ITB formation with pellet injection in a tokamak is investigated. These simulations use a neoclassical transport model and an anomalous transport model (either multimode or mixed Bohm/gyro-Bohm core transport model). The boundary condition is described at the top of the pedestal, which is calculated theoretically based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient model. The toroidal flow calculation is based on the neoclassical viscosity toroidal velocity model. It was found that the shallower pellet does not destroy the ITB, which locating mainly between r/a = 0.8 and 0.9. Moreover, in the plasma center region (0.4<r/a<0.6) the effective electron thermal diffusivities do not change during the ablation time. However, the effective electron thermal diffusivities decrease after pellet ablation, which means a shallower pellet can improve the internal transport barrier.\",\"PeriodicalId\":426475,\"journal\":{\"name\":\"ASEAN Journal of Scientific and Technological Reports\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Scientific and Technological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55164/ajstr.v25i4.247569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Scientific and Technological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55164/ajstr.v25i4.247569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用1.5D BALDUR集成预测建模代码,对颗粒加注过程中存在内部传输障碍的JET h模式等离子体放电53212进行了模拟。研究了托卡马克注入微球形成ITB过程中等离子体的不稳定性。这些模拟使用了新经典输运模型和异常输运模型(多模或混合Bohm/ gyrobohm核心输运模型)。基于磁稳定与流剪切稳定相结合的基座宽度缩放和无限n个气胀压力梯度模型,对基座顶部的边界条件进行了理论计算。环面流动的计算基于新经典粘度环面速度模型。结果表明,较浅的球团对ITB没有破坏作用,主要分布在r/a = 0.8 ~ 0.9之间。在等离子体中心区域(0.4本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Plasma Instability During ITBs Formation with Pellet Injection in Tokamak
JET H-mode plasma discharge 53212 simulation during the pellet fueling operation in the presence of an internal transport barrier is carried out using the 1.5D BALDUR integrated predictive modelling code. The plasma instability during ITB formation with pellet injection in a tokamak is investigated. These simulations use a neoclassical transport model and an anomalous transport model (either multimode or mixed Bohm/gyro-Bohm core transport model). The boundary condition is described at the top of the pedestal, which is calculated theoretically based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient model. The toroidal flow calculation is based on the neoclassical viscosity toroidal velocity model. It was found that the shallower pellet does not destroy the ITB, which locating mainly between r/a = 0.8 and 0.9. Moreover, in the plasma center region (0.4
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信