Daniele Di Vito, Mathieux Bergeron, D. Meger, Gregory Dudek, G. Antonelli
{"title":"基于任务优先级逆运动学框架的冗余机器人动态规划","authors":"Daniele Di Vito, Mathieux Bergeron, D. Meger, Gregory Dudek, G. Antonelli","doi":"10.1109/CCTA41146.2020.9206268","DOIUrl":null,"url":null,"abstract":"This work presents the dynamic planning of redundant robots by merging a global and local planner. The global planner is implemented as a sampling-based algorithm which works in the reduced-dimensionality of the robot workspace applying the Cartesian constraints only. The output trajectory is then checked within a framework of set-based task priority inverse kinematics verifying the fulfillment of the other task constraints. The inverse kinematics framework is used also in real-time as local motion control to ensure a reactive behaviour to address, e.g., mismatch between the apriori information and on-line perception acquisition. During the movement, the motion planner runs in background to adapt to changes in the environment or, in general, to continuously optimize the path. The proposed method is experimentally validated with a Kinova Jaco2 7 degrees of freedom manipulator.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic planning of redundant robots within a set-based task-priority inverse kinematics framework\",\"authors\":\"Daniele Di Vito, Mathieux Bergeron, D. Meger, Gregory Dudek, G. Antonelli\",\"doi\":\"10.1109/CCTA41146.2020.9206268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the dynamic planning of redundant robots by merging a global and local planner. The global planner is implemented as a sampling-based algorithm which works in the reduced-dimensionality of the robot workspace applying the Cartesian constraints only. The output trajectory is then checked within a framework of set-based task priority inverse kinematics verifying the fulfillment of the other task constraints. The inverse kinematics framework is used also in real-time as local motion control to ensure a reactive behaviour to address, e.g., mismatch between the apriori information and on-line perception acquisition. During the movement, the motion planner runs in background to adapt to changes in the environment or, in general, to continuously optimize the path. The proposed method is experimentally validated with a Kinova Jaco2 7 degrees of freedom manipulator.\",\"PeriodicalId\":241335,\"journal\":{\"name\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA41146.2020.9206268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic planning of redundant robots within a set-based task-priority inverse kinematics framework
This work presents the dynamic planning of redundant robots by merging a global and local planner. The global planner is implemented as a sampling-based algorithm which works in the reduced-dimensionality of the robot workspace applying the Cartesian constraints only. The output trajectory is then checked within a framework of set-based task priority inverse kinematics verifying the fulfillment of the other task constraints. The inverse kinematics framework is used also in real-time as local motion control to ensure a reactive behaviour to address, e.g., mismatch between the apriori information and on-line perception acquisition. During the movement, the motion planner runs in background to adapt to changes in the environment or, in general, to continuously optimize the path. The proposed method is experimentally validated with a Kinova Jaco2 7 degrees of freedom manipulator.