用于生物传感器的二维钙钛矿

J. Seo
{"title":"用于生物传感器的二维钙钛矿","authors":"J. Seo","doi":"10.32473/ufjur.v23i.128412","DOIUrl":null,"url":null,"abstract":"2D perovskite’s quantum confinement and superlattices enhance electron and hole recombination which maximizes the photoluminescence quantum efficiency for optical devices. However, only a few works have been reported for biological applications, especially, DNA associated. Contemporary gene-editing science through CRISPR technology is advantageous as all types of nucleic acid chains such as RNA, single-stranded DNA, and double-stranded DNA can be modified. There are numerous reports that base pairs of nucleic acids are nonpolar and 2D perovskites that are capped with aliphatic chains possibly can operate as an optical sensor for detecting a specific sequence of DNA. Here, we demonstrate organic-inorganic halide 2D perovskite’s – capped with eight carbon long aliphatic chains – optical and structural properties. Self-assembly of tin-based perovskites showed near-unity photoluminescence quantum yield but had poor stability in water or ambient condition due to hydrolysis whereas lead-based perovskites showed less PL but were stable in water at high concentration. 2D perovskites’ unique multiple emission peaks at different wavelengths, water stability, and intensity discrepancy when conjugated in nucleoside dispersed solution were studied. However, complex multiple directionalities of PL emission, water stability by concentration, minor PL intensity or wavelength discrepancy, and toxicity followed by the lead source for the perovskites are conflicting with robust and convenient detection technique for the DNA.","PeriodicalId":278243,"journal":{"name":"UF Journal of Undergraduate Research","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Perovskites for Biological Sensors\",\"authors\":\"J. Seo\",\"doi\":\"10.32473/ufjur.v23i.128412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D perovskite’s quantum confinement and superlattices enhance electron and hole recombination which maximizes the photoluminescence quantum efficiency for optical devices. However, only a few works have been reported for biological applications, especially, DNA associated. Contemporary gene-editing science through CRISPR technology is advantageous as all types of nucleic acid chains such as RNA, single-stranded DNA, and double-stranded DNA can be modified. There are numerous reports that base pairs of nucleic acids are nonpolar and 2D perovskites that are capped with aliphatic chains possibly can operate as an optical sensor for detecting a specific sequence of DNA. Here, we demonstrate organic-inorganic halide 2D perovskite’s – capped with eight carbon long aliphatic chains – optical and structural properties. Self-assembly of tin-based perovskites showed near-unity photoluminescence quantum yield but had poor stability in water or ambient condition due to hydrolysis whereas lead-based perovskites showed less PL but were stable in water at high concentration. 2D perovskites’ unique multiple emission peaks at different wavelengths, water stability, and intensity discrepancy when conjugated in nucleoside dispersed solution were studied. However, complex multiple directionalities of PL emission, water stability by concentration, minor PL intensity or wavelength discrepancy, and toxicity followed by the lead source for the perovskites are conflicting with robust and convenient detection technique for the DNA.\",\"PeriodicalId\":278243,\"journal\":{\"name\":\"UF Journal of Undergraduate Research\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UF Journal of Undergraduate Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/ufjur.v23i.128412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UF Journal of Undergraduate Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/ufjur.v23i.128412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维钙钛矿的量子约束和超晶格增强了电子和空穴的复合,使光学器件的光致发光量子效率最大化。然而,在生物学应用方面,特别是在DNA相关方面的研究很少。通过CRISPR技术进行基因编辑的当代科学具有优势,因为可以对RNA、单链DNA、双链DNA等所有类型的核酸链进行修饰。有许多报道称核酸的碱基对是非极性的,而被脂肪链覆盖的二维钙钛矿可能可以作为检测特定DNA序列的光学传感器。在这里,我们展示了有机-无机卤化物2D钙钛矿-由八个碳长脂肪链覆盖-光学和结构性质。锡基自组装钙钛矿的光致发光量子产率接近统一,但在水或环境条件下由于水解而稳定性较差,而铅基钙钛矿的光致发光量子产率较低,但在高浓度水中稳定。研究了二维钙钛矿在不同波长下独特的多发射峰、水稳定性以及在核苷分散溶液中共轭时的强度差异。然而,复杂的多方向发光,浓度的水稳定性,微小的发光强度或波长差异,以及钙钛矿铅源的毒性,与DNA的可靠和方便的检测技术相冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Perovskites for Biological Sensors
2D perovskite’s quantum confinement and superlattices enhance electron and hole recombination which maximizes the photoluminescence quantum efficiency for optical devices. However, only a few works have been reported for biological applications, especially, DNA associated. Contemporary gene-editing science through CRISPR technology is advantageous as all types of nucleic acid chains such as RNA, single-stranded DNA, and double-stranded DNA can be modified. There are numerous reports that base pairs of nucleic acids are nonpolar and 2D perovskites that are capped with aliphatic chains possibly can operate as an optical sensor for detecting a specific sequence of DNA. Here, we demonstrate organic-inorganic halide 2D perovskite’s – capped with eight carbon long aliphatic chains – optical and structural properties. Self-assembly of tin-based perovskites showed near-unity photoluminescence quantum yield but had poor stability in water or ambient condition due to hydrolysis whereas lead-based perovskites showed less PL but were stable in water at high concentration. 2D perovskites’ unique multiple emission peaks at different wavelengths, water stability, and intensity discrepancy when conjugated in nucleoside dispersed solution were studied. However, complex multiple directionalities of PL emission, water stability by concentration, minor PL intensity or wavelength discrepancy, and toxicity followed by the lead source for the perovskites are conflicting with robust and convenient detection technique for the DNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信