基于真实数据集的分销公司业务异常值检测

Merisa Golic, E. Žunić, D. Donko
{"title":"基于真实数据集的分销公司业务异常值检测","authors":"Merisa Golic, E. Žunić, D. Donko","doi":"10.1109/EUROCON.2019.8861526","DOIUrl":null,"url":null,"abstract":"Outlier detection represents the problem of finding patterns in data that does not fit in expected behaviour. In this paper, outlier detection is done over real transactional data set of the distribution company. Outlier detection is done over time-series data, and over an ordered number of products that can be found within transactions. Unsupervised techniques and methods, S-H-ESD and LOF, are applied because data set is unlabelled. Implementation is performed in R language, and web application dashboard using R Shiny is made. Based on collected results, a proposal for creating the outlier detection and prevention system is made, and ideas for further improvements and additional analysis are given.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outlier detection in distribution companies business using real data set\",\"authors\":\"Merisa Golic, E. Žunić, D. Donko\",\"doi\":\"10.1109/EUROCON.2019.8861526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection represents the problem of finding patterns in data that does not fit in expected behaviour. In this paper, outlier detection is done over real transactional data set of the distribution company. Outlier detection is done over time-series data, and over an ordered number of products that can be found within transactions. Unsupervised techniques and methods, S-H-ESD and LOF, are applied because data set is unlabelled. Implementation is performed in R language, and web application dashboard using R Shiny is made. Based on collected results, a proposal for creating the outlier detection and prevention system is made, and ideas for further improvements and additional analysis are given.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离群值检测表示在数据中发现不符合预期行为的模式的问题。本文对配送公司的真实交易数据集进行异常值检测。异常值检测是对时间序列数据和在事务中可以找到的有序数量的产品进行的。无监督技术和方法,S-H-ESD和LOF,被应用,因为数据集是未标记的。使用R语言实现,并使用R Shiny制作了web应用程序仪表板。根据收集到的结果,提出了建立异常点检测和预防系统的建议,并给出了进一步改进和进一步分析的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier detection in distribution companies business using real data set
Outlier detection represents the problem of finding patterns in data that does not fit in expected behaviour. In this paper, outlier detection is done over real transactional data set of the distribution company. Outlier detection is done over time-series data, and over an ordered number of products that can be found within transactions. Unsupervised techniques and methods, S-H-ESD and LOF, are applied because data set is unlabelled. Implementation is performed in R language, and web application dashboard using R Shiny is made. Based on collected results, a proposal for creating the outlier detection and prevention system is made, and ideas for further improvements and additional analysis are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信