一般图的安全最大权匹配近似

Malte Breuer, Andreas Klinger, T. Schneider, Ulrike Meyer
{"title":"一般图的安全最大权匹配近似","authors":"Malte Breuer, Andreas Klinger, T. Schneider, Ulrike Meyer","doi":"10.1145/3559613.3563209","DOIUrl":null,"url":null,"abstract":"Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.","PeriodicalId":416548,"journal":{"name":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Secure Maximum Weight Matching Approximation on General Graphs\",\"authors\":\"Malte Breuer, Andreas Klinger, T. Schneider, Ulrike Meyer\",\"doi\":\"10.1145/3559613.3563209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.\",\"PeriodicalId\":416548,\"journal\":{\"name\":\"Proceedings of the 21st Workshop on Privacy in the Electronic Society\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st Workshop on Privacy in the Electronic Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3559613.3563209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3559613.3563209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一般图上匹配的隐私保护协议可用于在线约会、物物交换或肾脏捐赠者交换等应用程序。此外,它们还可以作为更复杂协议的构建块。虽然二部图匹配的隐私保护协议是一个研究得很好的主题,但到目前为止,一般图的情况很少受到关注。我们通过提供通用图上最大权匹配的第一个隐私保护协议来解决这一差距。为了使我们的方法的可扩展性最大化,我们计算1/2近似而不是精确解。对于N个节点,我们的协议需要O(N log N)轮询,O(N^3)次通信,并且在N=400时仅运行12.5分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Maximum Weight Matching Approximation on General Graphs
Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信