{"title":"基于射频测量和鱼眼图像的陆地移动卫星传播信道表征","authors":"J. Israel, M. Ait-Ighil","doi":"10.1109/VTCFall.2017.8287900","DOIUrl":null,"url":null,"abstract":"This paper is focused on the characterization of a mobile Radio Frequency (RF) receiver environment. Based on fish-eye images acquired simultaneously with the RF signal, the detection of the sky, the vegetation and the close obstacles is performed. This optical environment characterization exhibits a strong correlation with the direct RF signal classification as recommended by the International Telecommunication Union (ITU).","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Land Mobile Satellite Propagation Channel Characterization Based on RF Measurements and Fish-Eye Images\",\"authors\":\"J. Israel, M. Ait-Ighil\",\"doi\":\"10.1109/VTCFall.2017.8287900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on the characterization of a mobile Radio Frequency (RF) receiver environment. Based on fish-eye images acquired simultaneously with the RF signal, the detection of the sky, the vegetation and the close obstacles is performed. This optical environment characterization exhibits a strong correlation with the direct RF signal classification as recommended by the International Telecommunication Union (ITU).\",\"PeriodicalId\":375803,\"journal\":{\"name\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2017.8287900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8287900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Land Mobile Satellite Propagation Channel Characterization Based on RF Measurements and Fish-Eye Images
This paper is focused on the characterization of a mobile Radio Frequency (RF) receiver environment. Based on fish-eye images acquired simultaneously with the RF signal, the detection of the sky, the vegetation and the close obstacles is performed. This optical environment characterization exhibits a strong correlation with the direct RF signal classification as recommended by the International Telecommunication Union (ITU).