{"title":"可分解凸优化问题的精确惩罚","authors":"I. Konnov","doi":"10.1080/10556788.2021.1977807","DOIUrl":null,"url":null,"abstract":"We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact penalties for decomposable convex optimization problems\",\"authors\":\"I. Konnov\",\"doi\":\"10.1080/10556788.2021.1977807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.1977807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1977807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact penalties for decomposable convex optimization problems
We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.