几类有向图的赫尔数和大地数

Q3 Computer Science
Julio Araujo, Pedro Arraes
{"title":"几类有向图的赫尔数和大地数","authors":"Julio Araujo,&nbsp;Pedro Arraes","doi":"10.1016/j.entcs.2019.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>An oriented graph <em>D</em> is an orientation of a simple graph, i.e. a directed graph whose underlying graph is simple. A directed path from <em>u</em> to <em>v</em> with minimum number of arcs in <em>D</em> is an (<em>u</em>, <em>v</em>)-geodesic, for every <em>u</em>, <em>v</em> ∈ <em>V</em>(<em>D</em>). A set <em>S</em> ⊆ <em>V</em>(<em>D</em>) is (geodesically) convex if, for every <em>u</em>, <em>v</em> ∈ <em>S</em>, all the vertices in each (<em>u</em>, <em>v</em>)-geodesic and in each (<em>v</em>, <em>u</em>)-geodesic are in <em>S</em>. For every <em>S</em> ⊆ <em>V</em>(<em>D</em>) the (convex) hull of <em>S</em> is the smallest convex set containing <em>S</em> and it is denoted by [<em>S</em>]. A hull set of <em>D</em> is a set <em>S</em> ⊆ <em>V</em>(<em>D</em>) whose hull is <em>V</em>(<em>D</em>). The cardinality of a minimum hull set is the hull number of <em>D</em> and it is denoted by <span><math><mover><mrow><mi>h</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. A geodetic set of <em>D</em> is a set <em>S</em> ⊆ <em>V</em>(<em>D</em>) such that each vertex of <em>D</em> lies in an (<em>u</em>, <em>v</em>)-geodesic, for some <em>u</em>, <em>v</em> ∈ <em>S</em>. The cardinality of a minimum geodetic set is the geodetic number of <em>D</em> and it is denoted by <span><math><mover><mrow><mi>g</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span>.</p><p>In this work, we first present an upper bound for the hull number of oriented split graphs. Then, we turn our attention to the computational complexity of determining such parameters. We first show that computing <span><math><mover><mrow><mi>h</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is NP-hard for partial cubes, a subclass of bipartite graphs, and that computing <span><math><mover><mrow><mi>g</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is also NP-hard for directed acyclic graphs (DAG). Finally, we present a positive result by showing how to compute such parameters in polynomial time when the input graph is an oriented cactus.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 77-88"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.008","citationCount":"1","resultStr":"{\"title\":\"Hull and Geodetic Numbers for Some Classes of Oriented Graphs\",\"authors\":\"Julio Araujo,&nbsp;Pedro Arraes\",\"doi\":\"10.1016/j.entcs.2019.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An oriented graph <em>D</em> is an orientation of a simple graph, i.e. a directed graph whose underlying graph is simple. A directed path from <em>u</em> to <em>v</em> with minimum number of arcs in <em>D</em> is an (<em>u</em>, <em>v</em>)-geodesic, for every <em>u</em>, <em>v</em> ∈ <em>V</em>(<em>D</em>). A set <em>S</em> ⊆ <em>V</em>(<em>D</em>) is (geodesically) convex if, for every <em>u</em>, <em>v</em> ∈ <em>S</em>, all the vertices in each (<em>u</em>, <em>v</em>)-geodesic and in each (<em>v</em>, <em>u</em>)-geodesic are in <em>S</em>. For every <em>S</em> ⊆ <em>V</em>(<em>D</em>) the (convex) hull of <em>S</em> is the smallest convex set containing <em>S</em> and it is denoted by [<em>S</em>]. A hull set of <em>D</em> is a set <em>S</em> ⊆ <em>V</em>(<em>D</em>) whose hull is <em>V</em>(<em>D</em>). The cardinality of a minimum hull set is the hull number of <em>D</em> and it is denoted by <span><math><mover><mrow><mi>h</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. A geodetic set of <em>D</em> is a set <em>S</em> ⊆ <em>V</em>(<em>D</em>) such that each vertex of <em>D</em> lies in an (<em>u</em>, <em>v</em>)-geodesic, for some <em>u</em>, <em>v</em> ∈ <em>S</em>. The cardinality of a minimum geodetic set is the geodetic number of <em>D</em> and it is denoted by <span><math><mover><mrow><mi>g</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span>.</p><p>In this work, we first present an upper bound for the hull number of oriented split graphs. Then, we turn our attention to the computational complexity of determining such parameters. We first show that computing <span><math><mover><mrow><mi>h</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is NP-hard for partial cubes, a subclass of bipartite graphs, and that computing <span><math><mover><mrow><mi>g</mi><mi>n</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is also NP-hard for directed acyclic graphs (DAG). Finally, we present a positive result by showing how to compute such parameters in polynomial time when the input graph is an oriented cactus.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 77-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.008\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119300581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119300581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

有向图D是简单图的有向,即底层图为简单图的有向图。从u到v在D中弧数最少的有向路径是(u, v)-测地线,对于每个u, v∈v (D)。如果对于每个u, V∈S,每个(u, V)-测地线和每个(V, u)-测地线中的所有顶点都在S中,则集S的(凸)壳是包含S的最小凸集,记为[S],则集S是(测地线)凸。D的船体集是船体为V(D)的集S哉V(D)。最小船体集的基数为D的船体号,用hn→(D)表示。D的大地集是一个集S V(D),其中D的每个顶点位于(u, V)-测地线中,对于某个u, V∈S,最小大地集的基数是D的大地数,记为gn→(D)。在这项工作中,我们首先给出了有向分裂图的船体数的上界。然后,我们将注意力转向确定这些参数的计算复杂性。我们首先证明了计算hn→(D)对于二部图的一个子类偏立方是np困难的,并且计算gn→(D)对于有向无环图(DAG)也是np困难的。最后,我们展示了如何在多项式时间内计算这些参数,当输入图是一个有向仙人掌时,我们给出了一个积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hull and Geodetic Numbers for Some Classes of Oriented Graphs

An oriented graph D is an orientation of a simple graph, i.e. a directed graph whose underlying graph is simple. A directed path from u to v with minimum number of arcs in D is an (u, v)-geodesic, for every u, vV(D). A set SV(D) is (geodesically) convex if, for every u, vS, all the vertices in each (u, v)-geodesic and in each (v, u)-geodesic are in S. For every SV(D) the (convex) hull of S is the smallest convex set containing S and it is denoted by [S]. A hull set of D is a set SV(D) whose hull is V(D). The cardinality of a minimum hull set is the hull number of D and it is denoted by hn(D). A geodetic set of D is a set SV(D) such that each vertex of D lies in an (u, v)-geodesic, for some u, vS. The cardinality of a minimum geodetic set is the geodetic number of D and it is denoted by gn(D).

In this work, we first present an upper bound for the hull number of oriented split graphs. Then, we turn our attention to the computational complexity of determining such parameters. We first show that computing hn(D) is NP-hard for partial cubes, a subclass of bipartite graphs, and that computing gn(D) is also NP-hard for directed acyclic graphs (DAG). Finally, we present a positive result by showing how to compute such parameters in polynomial time when the input graph is an oriented cactus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信