基于多信号处理的Hammerstein输出误差模型参数估计

Xinjian Zhu, Feng Li, Chenghao Li, L. Jia, Qingfeng Cao
{"title":"基于多信号处理的Hammerstein输出误差模型参数估计","authors":"Xinjian Zhu, Feng Li, Chenghao Li, L. Jia, Qingfeng Cao","doi":"10.1109/DDCLS52934.2021.9455525","DOIUrl":null,"url":null,"abstract":"A parameter estimation method based on multi-signal processing is developed that aims at the Hammerstein output error model in this paper. The multi-signal processing is devised to estimate independently parameters of nonlinear block and linear block for Hammerstein output error model. Firstly, using input-output data of binary signal, the linear block parameters are computed by means of auxiliary model recursive least square method, the unmeasurable variables of the Hammerstein model are effectively handled using auxiliary model technology. In addition, model error probability density function technology is applied to estimate parameters of nonlinear block measurable input-output data of random signal, which not only can control space state distribution of model error, but also make error distribution tend to normal distribution. The results verify that proposed parameter estimation method can effectively estimate the Hammerstein output error model.","PeriodicalId":325897,"journal":{"name":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parameter Estimation of the Hammerstein Output Error Model Using Multi-signal Processing\",\"authors\":\"Xinjian Zhu, Feng Li, Chenghao Li, L. Jia, Qingfeng Cao\",\"doi\":\"10.1109/DDCLS52934.2021.9455525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parameter estimation method based on multi-signal processing is developed that aims at the Hammerstein output error model in this paper. The multi-signal processing is devised to estimate independently parameters of nonlinear block and linear block for Hammerstein output error model. Firstly, using input-output data of binary signal, the linear block parameters are computed by means of auxiliary model recursive least square method, the unmeasurable variables of the Hammerstein model are effectively handled using auxiliary model technology. In addition, model error probability density function technology is applied to estimate parameters of nonlinear block measurable input-output data of random signal, which not only can control space state distribution of model error, but also make error distribution tend to normal distribution. The results verify that proposed parameter estimation method can effectively estimate the Hammerstein output error model.\",\"PeriodicalId\":325897,\"journal\":{\"name\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS52934.2021.9455525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS52934.2021.9455525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对Hammerstein输出误差模型,提出了一种基于多信号处理的参数估计方法。针对Hammerstein输出误差模型,设计了多信号处理,分别对非线性块和线性块参数进行独立估计。首先,利用二值信号的输入输出数据,利用辅助模型递推最小二乘法计算线性块参数,利用辅助模型技术对Hammerstein模型的不可测变量进行有效处理;此外,将模型误差概率密度函数技术应用于随机信号非线性块可测输入输出数据的参数估计,不仅可以控制模型误差的空间状态分布,而且使误差分布趋于正态分布。结果表明,所提出的参数估计方法能够有效地估计Hammerstein输出误差模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation of the Hammerstein Output Error Model Using Multi-signal Processing
A parameter estimation method based on multi-signal processing is developed that aims at the Hammerstein output error model in this paper. The multi-signal processing is devised to estimate independently parameters of nonlinear block and linear block for Hammerstein output error model. Firstly, using input-output data of binary signal, the linear block parameters are computed by means of auxiliary model recursive least square method, the unmeasurable variables of the Hammerstein model are effectively handled using auxiliary model technology. In addition, model error probability density function technology is applied to estimate parameters of nonlinear block measurable input-output data of random signal, which not only can control space state distribution of model error, but also make error distribution tend to normal distribution. The results verify that proposed parameter estimation method can effectively estimate the Hammerstein output error model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信