噪声环境下HIS POMDP对话系统的训练与评价

Milica Gasic, Simon Keizer, François Mairesse, J. Schatzmann, Blaise Thomson, Kai Yu, S. Young
{"title":"噪声环境下HIS POMDP对话系统的训练与评价","authors":"Milica Gasic, Simon Keizer, François Mairesse, J. Schatzmann, Blaise Thomson, Kai Yu, S. Young","doi":"10.3115/1622064.1622087","DOIUrl":null,"url":null,"abstract":"This paper investigates the claim that a dialogue manager modelled as a Partially Observable Markov Decision Process (POMDP) can achieve improved robustness to noise compared to conventional state-based dialogue managers. Using the Hidden Information State (HIS) POMDP dialogue manager as an exemplar, and an MDP-based dialogue manager as a baseline, evaluation results are presented for both simulated and real dialogues in a Tourist Information Domain. The results on the simulated data show that the inherent ability to model uncertainty, allows the POMDP model to exploit alternative hypotheses from the speech understanding system. The results obtained from a user trial show that the HIS system with a trained policy performed significantly better than the MDP baseline.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Training and Evaluation of the HIS POMDP Dialogue System in Noise\",\"authors\":\"Milica Gasic, Simon Keizer, François Mairesse, J. Schatzmann, Blaise Thomson, Kai Yu, S. Young\",\"doi\":\"10.3115/1622064.1622087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the claim that a dialogue manager modelled as a Partially Observable Markov Decision Process (POMDP) can achieve improved robustness to noise compared to conventional state-based dialogue managers. Using the Hidden Information State (HIS) POMDP dialogue manager as an exemplar, and an MDP-based dialogue manager as a baseline, evaluation results are presented for both simulated and real dialogues in a Tourist Information Domain. The results on the simulated data show that the inherent ability to model uncertainty, allows the POMDP model to exploit alternative hypotheses from the speech understanding system. The results obtained from a user trial show that the HIS system with a trained policy performed significantly better than the MDP baseline.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1622064.1622087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622064.1622087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本文研究了与传统的基于状态的对话管理器相比,将对话管理器建模为部分可观察马尔可夫决策过程(POMDP)可以实现更好的对噪声的鲁棒性。以隐藏信息状态(HIS) POMDP对话管理器为例,以基于mdp的对话管理器为基线,给出了旅游信息域中模拟对话和真实对话的评估结果。模拟数据的结果表明,POMDP模型具有固有的不确定性建模能力,可以利用语音理解系统的替代假设。从用户试用中获得的结果表明,具有训练策略的HIS系统的性能明显优于MDP基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training and Evaluation of the HIS POMDP Dialogue System in Noise
This paper investigates the claim that a dialogue manager modelled as a Partially Observable Markov Decision Process (POMDP) can achieve improved robustness to noise compared to conventional state-based dialogue managers. Using the Hidden Information State (HIS) POMDP dialogue manager as an exemplar, and an MDP-based dialogue manager as a baseline, evaluation results are presented for both simulated and real dialogues in a Tourist Information Domain. The results on the simulated data show that the inherent ability to model uncertainty, allows the POMDP model to exploit alternative hypotheses from the speech understanding system. The results obtained from a user trial show that the HIS system with a trained policy performed significantly better than the MDP baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信