基于站立阶段步态时间参数模糊聚类的步行速度估计

A. Manurung, Jungwon Yoon
{"title":"基于站立阶段步态时间参数模糊聚类的步行速度估计","authors":"A. Manurung, Jungwon Yoon","doi":"10.1109/ICCAS.2010.5669795","DOIUrl":null,"url":null,"abstract":"In this study we describe walking speed estimation method using only temporal parameters of gait. Further, this method can be adopted for automatic speed adaptation during walking on treadmill which is useful for gait rehabilitation process and also for navigation in virtual reality environment. The proposed speed estimation method is based on two temporal parameters during stance phase: time duration from heel contact (HC) to heel off (HO) and from heel contact (HC) to toe off (TO). To estimate walking speed, first, data for previously mentioned gait parameters are taken for several walking speed. After that, fuzzy clustering approach is used to identify how those two gait parameters affect walking speed. By using result from fuzzy clustering, subject's walking speed at any speed can be estimated by computing its membership. This method is inexpensive and easy to implement since it only uses simple foot switch.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fuzzy clustering of temporal parameters of gait during stance phase for walking speed estimation\",\"authors\":\"A. Manurung, Jungwon Yoon\",\"doi\":\"10.1109/ICCAS.2010.5669795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we describe walking speed estimation method using only temporal parameters of gait. Further, this method can be adopted for automatic speed adaptation during walking on treadmill which is useful for gait rehabilitation process and also for navigation in virtual reality environment. The proposed speed estimation method is based on two temporal parameters during stance phase: time duration from heel contact (HC) to heel off (HO) and from heel contact (HC) to toe off (TO). To estimate walking speed, first, data for previously mentioned gait parameters are taken for several walking speed. After that, fuzzy clustering approach is used to identify how those two gait parameters affect walking speed. By using result from fuzzy clustering, subject's walking speed at any speed can be estimated by computing its membership. This method is inexpensive and easy to implement since it only uses simple foot switch.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5669795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,我们描述了仅使用步态的时间参数来估计步行速度的方法。此外,该方法可用于跑步机行走过程中的自动速度适应,对步态康复过程和虚拟现实环境下的导航都有帮助。提出的速度估计方法基于站立阶段的两个时间参数:从脚跟接触(HC)到脚跟脱落(HO)和脚跟接触(HC)到脚趾脱落(to)的时间长度。为了估计步行速度,首先,对几种步行速度取先前提到的步态参数数据。然后,采用模糊聚类方法识别两种步态参数对步行速度的影响。利用模糊聚类的结果,通过计算其隶属度来估计受试者在任意速度下的行走速度。该方法只使用简单的脚踏开关,价格低廉,易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy clustering of temporal parameters of gait during stance phase for walking speed estimation
In this study we describe walking speed estimation method using only temporal parameters of gait. Further, this method can be adopted for automatic speed adaptation during walking on treadmill which is useful for gait rehabilitation process and also for navigation in virtual reality environment. The proposed speed estimation method is based on two temporal parameters during stance phase: time duration from heel contact (HC) to heel off (HO) and from heel contact (HC) to toe off (TO). To estimate walking speed, first, data for previously mentioned gait parameters are taken for several walking speed. After that, fuzzy clustering approach is used to identify how those two gait parameters affect walking speed. By using result from fuzzy clustering, subject's walking speed at any speed can be estimated by computing its membership. This method is inexpensive and easy to implement since it only uses simple foot switch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信