W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel
{"title":"构造极大单调集值动力系统周期解的时间步进方法","authors":"W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel","doi":"10.1109/CDC.2014.7039866","DOIUrl":null,"url":null,"abstract":"In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems\",\"authors\":\"W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel\",\"doi\":\"10.1109/CDC.2014.7039866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7039866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems
In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.