基于抽象信息和社区对齐信息的链路预测

Mrinmaya Sachan, R. Ichise
{"title":"基于抽象信息和社区对齐信息的链路预测","authors":"Mrinmaya Sachan, R. Ichise","doi":"10.1109/ICMLC.2010.25","DOIUrl":null,"url":null,"abstract":"Although there have been many recent studies of link prediction in co-authorship networks, few have tried to utilize the Semantic information hidden in abstracts of the research documents. We propose to build a link predictor in a co-authorship network where nodes represent researchers and links represent co-authorship. In this method, we use the structure of the constructed graph, and propose to add a semantic approach using abstract information, research titles and the event information to improve the accuracy of the predictor. Secondly, we make use of the fact that researchers tend to work in close knit communities. The knowledge of a pair of researchers lying in the same dense community can be used to improve the accuracy of our predictor further. Finally, we test out hypothesis on the DBLP database in a reasonable time by under-sampling and balancing the data set using decision trees and the SMOTE technique.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Abstract Information and Community Alignment Information for Link Prediction\",\"authors\":\"Mrinmaya Sachan, R. Ichise\",\"doi\":\"10.1109/ICMLC.2010.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although there have been many recent studies of link prediction in co-authorship networks, few have tried to utilize the Semantic information hidden in abstracts of the research documents. We propose to build a link predictor in a co-authorship network where nodes represent researchers and links represent co-authorship. In this method, we use the structure of the constructed graph, and propose to add a semantic approach using abstract information, research titles and the event information to improve the accuracy of the predictor. Secondly, we make use of the fact that researchers tend to work in close knit communities. The knowledge of a pair of researchers lying in the same dense community can be used to improve the accuracy of our predictor further. Finally, we test out hypothesis on the DBLP database in a reasonable time by under-sampling and balancing the data set using decision trees and the SMOTE technique.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

虽然最近有很多关于合作网络链接预测的研究,但很少有人试图利用隐藏在研究文献摘要中的语义信息。我们建议在合作作者网络中建立一个链接预测器,其中节点代表研究人员,链接代表合作作者。在该方法中,我们利用构造图的结构,并提出了一种使用抽象信息、研究标题和事件信息的语义方法来提高预测器的准确性。其次,我们利用了研究人员倾向于在紧密联系的社区中工作的事实。位于同一密集社区的一对研究人员的知识可以用来进一步提高我们的预测器的准确性。最后,我们在合理的时间内通过欠采样和使用决策树和SMOTE技术平衡数据集来验证DBLP数据库上的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Abstract Information and Community Alignment Information for Link Prediction
Although there have been many recent studies of link prediction in co-authorship networks, few have tried to utilize the Semantic information hidden in abstracts of the research documents. We propose to build a link predictor in a co-authorship network where nodes represent researchers and links represent co-authorship. In this method, we use the structure of the constructed graph, and propose to add a semantic approach using abstract information, research titles and the event information to improve the accuracy of the predictor. Secondly, we make use of the fact that researchers tend to work in close knit communities. The knowledge of a pair of researchers lying in the same dense community can be used to improve the accuracy of our predictor further. Finally, we test out hypothesis on the DBLP database in a reasonable time by under-sampling and balancing the data set using decision trees and the SMOTE technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信