基于机器学习的蛋白质-蛋白质相互作用预测,使用物理化学表示

J. D. Arango-Rodriguez, A. F. Cardona-Escobar, J. A. Jaramillo-Garzón, J. C. Arroyave-Ospina
{"title":"基于机器学习的蛋白质-蛋白质相互作用预测,使用物理化学表示","authors":"J. D. Arango-Rodriguez, A. F. Cardona-Escobar, J. A. Jaramillo-Garzón, J. C. Arroyave-Ospina","doi":"10.1109/STSIVA.2016.7743304","DOIUrl":null,"url":null,"abstract":"Many proteins can interact with other proteins to perform specific functions. Predicting those interactions is important in order to analyze signaling pathways or to define the influence of a specific protein in some diseases. This work proposes the implementation of Support Vector Machines (SVM) for the prediction of protein-protein interactions using physical-chemical features taken from AA index. This algorithm was trained with a set of over 10.000 positive interactions from DIP database, and the same number of negative interactions through random permutations. The obtained results demonstrate that these features can provide useful information for the training set in order to improve the quality of the classification. Additionally, tunning the parameters of the SVM with Particle Swarm Optimization, lead to significantly improve the performance of the machine (greater than 70%), in comparison to recent studies.","PeriodicalId":373420,"journal":{"name":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine learning based protein-protein interaction prediction using physical-chemical representations\",\"authors\":\"J. D. Arango-Rodriguez, A. F. Cardona-Escobar, J. A. Jaramillo-Garzón, J. C. Arroyave-Ospina\",\"doi\":\"10.1109/STSIVA.2016.7743304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many proteins can interact with other proteins to perform specific functions. Predicting those interactions is important in order to analyze signaling pathways or to define the influence of a specific protein in some diseases. This work proposes the implementation of Support Vector Machines (SVM) for the prediction of protein-protein interactions using physical-chemical features taken from AA index. This algorithm was trained with a set of over 10.000 positive interactions from DIP database, and the same number of negative interactions through random permutations. The obtained results demonstrate that these features can provide useful information for the training set in order to improve the quality of the classification. Additionally, tunning the parameters of the SVM with Particle Swarm Optimization, lead to significantly improve the performance of the machine (greater than 70%), in comparison to recent studies.\",\"PeriodicalId\":373420,\"journal\":{\"name\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2016.7743304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2016.7743304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

许多蛋白质可以与其他蛋白质相互作用以执行特定功能。预测这些相互作用对于分析信号通路或确定特定蛋白质在某些疾病中的影响非常重要。这项工作提出了支持向量机(SVM)的实现,用于使用从AA指数中获取的物理化学特征来预测蛋白质之间的相互作用。该算法使用DIP数据库中超过10,000个正交互,以及通过随机排列的相同数量的负交互进行训练。结果表明,这些特征可以为训练集提供有用的信息,从而提高分类质量。此外,与最近的研究相比,通过粒子群优化对SVM的参数进行调优,可以显著提高机器的性能(大于70%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning based protein-protein interaction prediction using physical-chemical representations
Many proteins can interact with other proteins to perform specific functions. Predicting those interactions is important in order to analyze signaling pathways or to define the influence of a specific protein in some diseases. This work proposes the implementation of Support Vector Machines (SVM) for the prediction of protein-protein interactions using physical-chemical features taken from AA index. This algorithm was trained with a set of over 10.000 positive interactions from DIP database, and the same number of negative interactions through random permutations. The obtained results demonstrate that these features can provide useful information for the training set in order to improve the quality of the classification. Additionally, tunning the parameters of the SVM with Particle Swarm Optimization, lead to significantly improve the performance of the machine (greater than 70%), in comparison to recent studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信