PokerBot:手部力量强化学习

Angela Ramirez, Solomon Reinman, Narges Norouzi
{"title":"PokerBot:手部力量强化学习","authors":"Angela Ramirez, Solomon Reinman, Narges Norouzi","doi":"10.1109/INISTA.2019.8778267","DOIUrl":null,"url":null,"abstract":"We sought to explore the problem of teaching a reinforcement learning agent how to play Texas Hold ‘Em (THE), a popular poker game played with a standard 52-card deck. This is an interesting problem because THE, and poker in general, is an incomplete information game in which the best strategy must take into account a significant amount of uncertainty, and for which the input vector of relevant information could be potentially very large. The final product of our research is a simplistic but elegant application of reinforcement learning, with various approaches yielding promising results within the context of THE.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PokerBot: Hand Strength Reinforcement Learning\",\"authors\":\"Angela Ramirez, Solomon Reinman, Narges Norouzi\",\"doi\":\"10.1109/INISTA.2019.8778267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We sought to explore the problem of teaching a reinforcement learning agent how to play Texas Hold ‘Em (THE), a popular poker game played with a standard 52-card deck. This is an interesting problem because THE, and poker in general, is an incomplete information game in which the best strategy must take into account a significant amount of uncertainty, and for which the input vector of relevant information could be potentially very large. The final product of our research is a simplistic but elegant application of reinforcement learning, with various approaches yielding promising results within the context of THE.\",\"PeriodicalId\":262143,\"journal\":{\"name\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2019.8778267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们试图探索教强化学习智能体如何玩德州扑克(the)的问题,这是一种流行的扑克游戏,使用标准的52张牌。这是一个有趣的问题,因为扑克是一种不完全信息游戏,在这种游戏中,最佳策略必须考虑到大量的不确定性,而相关信息的输入向量可能非常大。我们研究的最终成果是一个简单但优雅的强化学习应用,在The的背景下,各种方法产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PokerBot: Hand Strength Reinforcement Learning
We sought to explore the problem of teaching a reinforcement learning agent how to play Texas Hold ‘Em (THE), a popular poker game played with a standard 52-card deck. This is an interesting problem because THE, and poker in general, is an incomplete information game in which the best strategy must take into account a significant amount of uncertainty, and for which the input vector of relevant information could be potentially very large. The final product of our research is a simplistic but elegant application of reinforcement learning, with various approaches yielding promising results within the context of THE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信