J. Balmat, F. Lafont, A. M. Ali, N. Pessel, J. C. R. Fernández
{"title":"基于自适应网络的模糊推理系统(ANFIS)评价温室作物参考蒸散量","authors":"J. Balmat, F. Lafont, A. M. Ali, N. Pessel, J. C. R. Fernández","doi":"10.1145/3310986.3310987","DOIUrl":null,"url":null,"abstract":"In this paper, the evaluation of the reference crop evapotranspiration (ETo) in a greenhouse is studied. Based upon an Adaptive-Network-Based Fuzzy Inference System (ANFIS), we proposed a methodology to estimate ETo using less information than the classical methods. The results obtained are presented for a greenhouse with real data.","PeriodicalId":252781,"journal":{"name":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of the reference evapotranspiration for a greenhouse crop using an Adaptive-Network-Based Fuzzy Inference System (ANFIS)\",\"authors\":\"J. Balmat, F. Lafont, A. M. Ali, N. Pessel, J. C. R. Fernández\",\"doi\":\"10.1145/3310986.3310987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the evaluation of the reference crop evapotranspiration (ETo) in a greenhouse is studied. Based upon an Adaptive-Network-Based Fuzzy Inference System (ANFIS), we proposed a methodology to estimate ETo using less information than the classical methods. The results obtained are presented for a greenhouse with real data.\",\"PeriodicalId\":252781,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310986.3310987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310986.3310987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of the reference evapotranspiration for a greenhouse crop using an Adaptive-Network-Based Fuzzy Inference System (ANFIS)
In this paper, the evaluation of the reference crop evapotranspiration (ETo) in a greenhouse is studied. Based upon an Adaptive-Network-Based Fuzzy Inference System (ANFIS), we proposed a methodology to estimate ETo using less information than the classical methods. The results obtained are presented for a greenhouse with real data.