利用具有数据感知弹性的云资源在雾计算环境中调度实时物联网工作流

Georgios L. Stavrinides, H. Karatza
{"title":"利用具有数据感知弹性的云资源在雾计算环境中调度实时物联网工作流","authors":"Georgios L. Stavrinides, H. Karatza","doi":"10.1109/FMEC54266.2021.9732561","DOIUrl":null,"url":null,"abstract":"In a fog computing environment the supplementary public cloud resources should be managed as effectively as possible, utilizing a dynamic scaling mechanism, in order to provide monetary cost savings and resilience against workload fluctuations. Furthermore, the dynamic scaling strategy should take into account the data dependencies of the workload, in order to prevent data loss. Towards this direction, in this paper we propose a reactive data-aware dynamic scaling mechanism for the provision of cloud resources, along with a heuristic for the scheduling of real-time Internet of Things (IoT) workflows, in a three-tier IoT-fog-cloud architecture. The performance of the proposed scheme is evaluated and compared via simulation to a static provisioning case, under different patterns of incoming workload. The simulation results provide useful insights into how each workload pattern affects the performance of the framework under study, in each of the provisioning cases of the cloud resources.","PeriodicalId":217996,"journal":{"name":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scheduling Real-Time IoT Workflows in a Fog Computing Environment Utilizing Cloud Resources with Data-Aware Elasticity\",\"authors\":\"Georgios L. Stavrinides, H. Karatza\",\"doi\":\"10.1109/FMEC54266.2021.9732561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a fog computing environment the supplementary public cloud resources should be managed as effectively as possible, utilizing a dynamic scaling mechanism, in order to provide monetary cost savings and resilience against workload fluctuations. Furthermore, the dynamic scaling strategy should take into account the data dependencies of the workload, in order to prevent data loss. Towards this direction, in this paper we propose a reactive data-aware dynamic scaling mechanism for the provision of cloud resources, along with a heuristic for the scheduling of real-time Internet of Things (IoT) workflows, in a three-tier IoT-fog-cloud architecture. The performance of the proposed scheme is evaluated and compared via simulation to a static provisioning case, under different patterns of incoming workload. The simulation results provide useful insights into how each workload pattern affects the performance of the framework under study, in each of the provisioning cases of the cloud resources.\",\"PeriodicalId\":217996,\"journal\":{\"name\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMEC54266.2021.9732561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC54266.2021.9732561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在雾计算环境中,应利用动态扩展机制尽可能有效地管理补充公共云资源,以节省资金成本,并能够抵御工作负载波动。此外,动态扩展策略应该考虑到工作负载的数据依赖性,以防止数据丢失。朝着这个方向,在本文中,我们在三层物联网雾云架构中提出了一种响应式数据感知动态扩展机制,用于提供云资源,以及一种启发式的实时物联网(IoT)工作流调度。在不同的传入工作负载模式下,通过仿真来评估和比较所提出方案的性能。模拟结果提供了有用的见解,可以了解在云资源的每种配置情况下,每个工作负载模式如何影响所研究的框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Real-Time IoT Workflows in a Fog Computing Environment Utilizing Cloud Resources with Data-Aware Elasticity
In a fog computing environment the supplementary public cloud resources should be managed as effectively as possible, utilizing a dynamic scaling mechanism, in order to provide monetary cost savings and resilience against workload fluctuations. Furthermore, the dynamic scaling strategy should take into account the data dependencies of the workload, in order to prevent data loss. Towards this direction, in this paper we propose a reactive data-aware dynamic scaling mechanism for the provision of cloud resources, along with a heuristic for the scheduling of real-time Internet of Things (IoT) workflows, in a three-tier IoT-fog-cloud architecture. The performance of the proposed scheme is evaluated and compared via simulation to a static provisioning case, under different patterns of incoming workload. The simulation results provide useful insights into how each workload pattern affects the performance of the framework under study, in each of the provisioning cases of the cloud resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信