Xin Xu, S. Schumann, Ali Ferschischi, W. Finger, C. Carta, F. Ellinger
{"title":"基于22纳米FD-SOI CMOS的5G无线系统28ghz和38ghz高增益双频LNA","authors":"Xin Xu, S. Schumann, Ali Ferschischi, W. Finger, C. Carta, F. Ellinger","doi":"10.1109/EuMIC48047.2021.00031","DOIUrl":null,"url":null,"abstract":"This paper presents a high-gain, dual-band low noise amplifier (LNA) for 5G wireless systems, which supports simultaneous operation at 28 GHz and 38 GHz. The circuit consists of two cascode stages, and is implemented in a 22 nm FD-SOI CMOS technology. To realize the dual-band operation, dual-band matching networks based on transmission lines and capacitors were used. The presented LNA draws a current of 7.1 mA from a 1.6 V supply, which results in a total power consumption of 11.4 mW. The LNA provides a gain of 19.3 dB and 24 dB at 28 GHz and 38 GHz, respectively. At the input of the LNA a dual-band matching network was implemented to obtain a simultaneous noise and power matching at 28 GHz and 38 GHz. The measured noise figure at 28 GHz and 38 GHz is about 5 dB. The presented LNA compares well against previously reported designs by showing one of the highest gain and the lowest power consumption while still having the comparable performance in the other figures of merit. To the best knowledge of the authors, this is the first LNA using dual-band matching technique to support dual-band operation at 5G millimeter-wave bands.","PeriodicalId":371692,"journal":{"name":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 28 GHz and 38 GHz High-Gain Dual-Band LNA for 5G Wireless Systems in 22 nm FD-SOI CMOS\",\"authors\":\"Xin Xu, S. Schumann, Ali Ferschischi, W. Finger, C. Carta, F. Ellinger\",\"doi\":\"10.1109/EuMIC48047.2021.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-gain, dual-band low noise amplifier (LNA) for 5G wireless systems, which supports simultaneous operation at 28 GHz and 38 GHz. The circuit consists of two cascode stages, and is implemented in a 22 nm FD-SOI CMOS technology. To realize the dual-band operation, dual-band matching networks based on transmission lines and capacitors were used. The presented LNA draws a current of 7.1 mA from a 1.6 V supply, which results in a total power consumption of 11.4 mW. The LNA provides a gain of 19.3 dB and 24 dB at 28 GHz and 38 GHz, respectively. At the input of the LNA a dual-band matching network was implemented to obtain a simultaneous noise and power matching at 28 GHz and 38 GHz. The measured noise figure at 28 GHz and 38 GHz is about 5 dB. The presented LNA compares well against previously reported designs by showing one of the highest gain and the lowest power consumption while still having the comparable performance in the other figures of merit. To the best knowledge of the authors, this is the first LNA using dual-band matching technique to support dual-band operation at 5G millimeter-wave bands.\",\"PeriodicalId\":371692,\"journal\":{\"name\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuMIC48047.2021.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuMIC48047.2021.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 28 GHz and 38 GHz High-Gain Dual-Band LNA for 5G Wireless Systems in 22 nm FD-SOI CMOS
This paper presents a high-gain, dual-band low noise amplifier (LNA) for 5G wireless systems, which supports simultaneous operation at 28 GHz and 38 GHz. The circuit consists of two cascode stages, and is implemented in a 22 nm FD-SOI CMOS technology. To realize the dual-band operation, dual-band matching networks based on transmission lines and capacitors were used. The presented LNA draws a current of 7.1 mA from a 1.6 V supply, which results in a total power consumption of 11.4 mW. The LNA provides a gain of 19.3 dB and 24 dB at 28 GHz and 38 GHz, respectively. At the input of the LNA a dual-band matching network was implemented to obtain a simultaneous noise and power matching at 28 GHz and 38 GHz. The measured noise figure at 28 GHz and 38 GHz is about 5 dB. The presented LNA compares well against previously reported designs by showing one of the highest gain and the lowest power consumption while still having the comparable performance in the other figures of merit. To the best knowledge of the authors, this is the first LNA using dual-band matching technique to support dual-band operation at 5G millimeter-wave bands.