两阶段线性规划的目标对准回归

Alexander S. Estes, Jean-Philippe P. Richard
{"title":"两阶段线性规划的目标对准回归","authors":"Alexander S. Estes, Jean-Philippe P. Richard","doi":"10.2139/ssrn.3469897","DOIUrl":null,"url":null,"abstract":"We study an approach to regression that we call objective-aligned fitting, which is applicable when the regression model is used to predict uncertain parameters of some objective problem. Rather than minimizing a typical loss function, such as squared error, we approximately minimize the objective value of the resulting solutions to the nominal optimization problem. While previous work on objective-aligned fitting has tended to focus on uncertainty in the objective function, we consider the case in which the nominal optimization problem is a two-stage linear program with uncertainty in the right-hand side. We define the objective-aligned loss function for the problem and prove structural properties concerning this loss function. Since the objective-aligned loss function is generally non-convex, we develop a convex approximation. We propose a method for fitting a linear regression model to the convex approximation of the objective-aligned loss. Computational results indicate that this procedure can lead to higher-quality solutions than existing regression procedures.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Objective-Aligned Regression for Two-Stage Linear Programs\",\"authors\":\"Alexander S. Estes, Jean-Philippe P. Richard\",\"doi\":\"10.2139/ssrn.3469897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study an approach to regression that we call objective-aligned fitting, which is applicable when the regression model is used to predict uncertain parameters of some objective problem. Rather than minimizing a typical loss function, such as squared error, we approximately minimize the objective value of the resulting solutions to the nominal optimization problem. While previous work on objective-aligned fitting has tended to focus on uncertainty in the objective function, we consider the case in which the nominal optimization problem is a two-stage linear program with uncertainty in the right-hand side. We define the objective-aligned loss function for the problem and prove structural properties concerning this loss function. Since the objective-aligned loss function is generally non-convex, we develop a convex approximation. We propose a method for fitting a linear regression model to the convex approximation of the objective-aligned loss. Computational results indicate that this procedure can lead to higher-quality solutions than existing regression procedures.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3469897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3469897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一种称为目标拟合的回归方法,它适用于回归模型对某些客观问题的不确定参数的预测。而不是最小化典型的损失函数,如平方误差,我们近似地最小化标称优化问题的结果解的目标值。虽然之前关于目标对齐拟合的工作倾向于关注目标函数的不确定性,但我们考虑的情况是,标称优化问题是一个两阶段线性规划,右侧不确定性。我们定义了目标对准的损失函数,并证明了该损失函数的结构性质。由于目标对准的损失函数通常是非凸的,我们开发了一个凸近似。我们提出了一种拟合线性回归模型到目标对准损失的凸逼近的方法。计算结果表明,该方法可以得到比现有回归方法更高质量的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective-Aligned Regression for Two-Stage Linear Programs
We study an approach to regression that we call objective-aligned fitting, which is applicable when the regression model is used to predict uncertain parameters of some objective problem. Rather than minimizing a typical loss function, such as squared error, we approximately minimize the objective value of the resulting solutions to the nominal optimization problem. While previous work on objective-aligned fitting has tended to focus on uncertainty in the objective function, we consider the case in which the nominal optimization problem is a two-stage linear program with uncertainty in the right-hand side. We define the objective-aligned loss function for the problem and prove structural properties concerning this loss function. Since the objective-aligned loss function is generally non-convex, we develop a convex approximation. We propose a method for fitting a linear regression model to the convex approximation of the objective-aligned loss. Computational results indicate that this procedure can lead to higher-quality solutions than existing regression procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信