简单的真空模块和相关品种

T. Arakawa, Cuipo Jiang, Anne Moreau
{"title":"简单的真空模块和相关品种","authors":"T. Arakawa, Cuipo Jiang, Anne Moreau","doi":"10.5802/JEP.144","DOIUrl":null,"url":null,"abstract":"In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simplicity of vacuum modules and associated varieties\",\"authors\":\"T. Arakawa, Cuipo Jiang, Anne Moreau\",\"doi\":\"10.5802/JEP.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\\\\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\\\\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了与一个简单李代数$\mathfrak{g}$相关联的泛仿射顶点代数是简单的当且仅当其唯一单商的相关变项等于$\mathfrak{g}^*$。我们也得到了一个类似的结果,即将量子化的Drinfeld-Sokolov约简应用于泛仿射顶点代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplicity of vacuum modules and associated varieties
In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信