{"title":"简单的真空模块和相关品种","authors":"T. Arakawa, Cuipo Jiang, Anne Moreau","doi":"10.5802/JEP.144","DOIUrl":null,"url":null,"abstract":"In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simplicity of vacuum modules and associated varieties\",\"authors\":\"T. Arakawa, Cuipo Jiang, Anne Moreau\",\"doi\":\"10.5802/JEP.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\\\\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\\\\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JEP.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simplicity of vacuum modules and associated varieties
In this note, we prove that the universal affine vertex algebra associated with a simple Lie algebra $\mathfrak{g}$ is simple if and only if the associated variety of its unique simple quotient is equal to $\mathfrak{g}^*$. We also derive an analogous result for the quantized Drinfeld-Sokolov reduction applied to the universal affine vertex algebra.