一眼就能找到相关性:食物还是不是食物?

Stéphanie Lopez, A. Revel, D. Lingrand, F. Precioso, V. Dusaucy, A. Giboin
{"title":"一眼就能找到相关性:食物还是不是食物?","authors":"Stéphanie Lopez, A. Revel, D. Lingrand, F. Precioso, V. Dusaucy, A. Giboin","doi":"10.1145/2909132.2926078","DOIUrl":null,"url":null,"abstract":"Retrieving specific categories of images among billions of images usually requires an annotation step. Unfortunately, keywords-based techniques suffer from the semantic gap existing between a semantic concept and its digital representation. Content Based Image Retrieval (CBIR) systems tackle this issue simply considering semantic proximities can be mapped to similarities in the image space. Introducing relevance feedbacks involves the user in the task, but extends the annotation step. To reduce the annotation time, we want to prove that implicit relevance feedback can replace an explicit one. In this study, we will evaluate the robustness of an implicit relevance feedback system only based on eye-tracking features (gaze-based interest estimator, GBIE). In [5], we showed that our GBIE was representative for any set of users using \"neutral images\". Here, we want to prove that it remains valid for more \"subjective categories\" such as food recipe.","PeriodicalId":250565,"journal":{"name":"Proceedings of the International Working Conference on Advanced Visual Interfaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catching Relevance in One Glimpse: Food or Not Food?\",\"authors\":\"Stéphanie Lopez, A. Revel, D. Lingrand, F. Precioso, V. Dusaucy, A. Giboin\",\"doi\":\"10.1145/2909132.2926078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrieving specific categories of images among billions of images usually requires an annotation step. Unfortunately, keywords-based techniques suffer from the semantic gap existing between a semantic concept and its digital representation. Content Based Image Retrieval (CBIR) systems tackle this issue simply considering semantic proximities can be mapped to similarities in the image space. Introducing relevance feedbacks involves the user in the task, but extends the annotation step. To reduce the annotation time, we want to prove that implicit relevance feedback can replace an explicit one. In this study, we will evaluate the robustness of an implicit relevance feedback system only based on eye-tracking features (gaze-based interest estimator, GBIE). In [5], we showed that our GBIE was representative for any set of users using \\\"neutral images\\\". Here, we want to prove that it remains valid for more \\\"subjective categories\\\" such as food recipe.\",\"PeriodicalId\":250565,\"journal\":{\"name\":\"Proceedings of the International Working Conference on Advanced Visual Interfaces\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Working Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2909132.2926078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Working Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2909132.2926078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数十亿图像中检索特定类别的图像通常需要一个注释步骤。不幸的是,基于关键字的技术受到语义概念与其数字表示之间存在的语义差距的影响。基于内容的图像检索(CBIR)系统简单地解决了这个问题,考虑到语义接近度可以映射到图像空间中的相似性。引入相关反馈涉及到任务中的用户,但扩展了注释步骤。为了减少标注时间,我们想证明隐式相关反馈可以取代显式相关反馈。在本研究中,我们将评估仅基于眼动追踪特征的隐式相关反馈系统(基于注视的兴趣估计器,GBIE)的鲁棒性。在[5]中,我们证明了我们的GBIE对于使用“中性图像”的任何一组用户都具有代表性。在这里,我们想要证明它对于更多的“主观类别”(如食物配方)仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catching Relevance in One Glimpse: Food or Not Food?
Retrieving specific categories of images among billions of images usually requires an annotation step. Unfortunately, keywords-based techniques suffer from the semantic gap existing between a semantic concept and its digital representation. Content Based Image Retrieval (CBIR) systems tackle this issue simply considering semantic proximities can be mapped to similarities in the image space. Introducing relevance feedbacks involves the user in the task, but extends the annotation step. To reduce the annotation time, we want to prove that implicit relevance feedback can replace an explicit one. In this study, we will evaluate the robustness of an implicit relevance feedback system only based on eye-tracking features (gaze-based interest estimator, GBIE). In [5], we showed that our GBIE was representative for any set of users using "neutral images". Here, we want to prove that it remains valid for more "subjective categories" such as food recipe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信