具有偏态创新的自回归模型

P. Bondon
{"title":"具有偏态创新的自回归模型","authors":"P. Bondon","doi":"10.5281/ZENODO.44204","DOIUrl":null,"url":null,"abstract":"We consider the problem of modelling asymmetric near-Gaussian correlated signals by autoregressive models with epsilon-skew normal innovations. Moments and maximum likelihood estimators of the parameters are proposed and their limit distributions are derived. Monte Carlo simulation results are analyzed and the model is fitted to a real time series.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoregressive models with epsilon-skew-normal innovations\",\"authors\":\"P. Bondon\",\"doi\":\"10.5281/ZENODO.44204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of modelling asymmetric near-Gaussian correlated signals by autoregressive models with epsilon-skew normal innovations. Moments and maximum likelihood estimators of the parameters are proposed and their limit distributions are derived. Monte Carlo simulation results are analyzed and the model is fitted to a real time series.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了用带有偏态创新的自回归模型对非对称近高斯相关信号进行建模的问题。给出了参数的矩估计和极大似然估计,并推导了它们的极限分布。对蒙特卡罗仿真结果进行了分析,并对模型进行了拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoregressive models with epsilon-skew-normal innovations
We consider the problem of modelling asymmetric near-Gaussian correlated signals by autoregressive models with epsilon-skew normal innovations. Moments and maximum likelihood estimators of the parameters are proposed and their limit distributions are derived. Monte Carlo simulation results are analyzed and the model is fitted to a real time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信