基于机器学习的可穿戴式多通道表面肌电信号生物识别技术

S. Said, Z. Albarakeh, T. Beyrouthy, S. Alkork, A. Nait-Ali
{"title":"基于机器学习的可穿戴式多通道表面肌电信号生物识别技术","authors":"S. Said, Z. Albarakeh, T. Beyrouthy, S. Alkork, A. Nait-Ali","doi":"10.1109/BioSMART54244.2021.9677744","DOIUrl":null,"url":null,"abstract":"Recently, wearable technologies have several bio-engineering applications. In this paper, a Multi-channel surface electromyography (sEMG) wearable armband has been used for an access control system in biometrics applications. A set of experiments have been conducted to explore the ability of sEMG signal to be used for user's identification system. Features are extracted from EMG signals in both frequency and time domains. Three classifiers have been used, namely: K-nearest Neighbors (KNN), Linear Discernment Analysis (LDA), and Ensemble of Classifiers. Results show that the KNN classifier allows performance of 86.01 % in the user's identification system.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine-Learning based Wearable Multi-Channel sEMG Biometrics Modality for User's Identification\",\"authors\":\"S. Said, Z. Albarakeh, T. Beyrouthy, S. Alkork, A. Nait-Ali\",\"doi\":\"10.1109/BioSMART54244.2021.9677744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, wearable technologies have several bio-engineering applications. In this paper, a Multi-channel surface electromyography (sEMG) wearable armband has been used for an access control system in biometrics applications. A set of experiments have been conducted to explore the ability of sEMG signal to be used for user's identification system. Features are extracted from EMG signals in both frequency and time domains. Three classifiers have been used, namely: K-nearest Neighbors (KNN), Linear Discernment Analysis (LDA), and Ensemble of Classifiers. Results show that the KNN classifier allows performance of 86.01 % in the user's identification system.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,可穿戴技术在生物工程方面有了一些应用。在本文中,多通道表面肌电(sEMG)可穿戴臂带已被用于生物识别应用中的门禁系统。为了探索表面肌电信号用于用户识别系统的能力,我们进行了一系列实验。从肌电信号的频率域和时间域提取特征。使用了三种分类器,即:k近邻(KNN),线性识别分析(LDA)和分类器集成。结果表明,在用户识别系统中,KNN分类器的识别率为86.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-Learning based Wearable Multi-Channel sEMG Biometrics Modality for User's Identification
Recently, wearable technologies have several bio-engineering applications. In this paper, a Multi-channel surface electromyography (sEMG) wearable armband has been used for an access control system in biometrics applications. A set of experiments have been conducted to explore the ability of sEMG signal to be used for user's identification system. Features are extracted from EMG signals in both frequency and time domains. Three classifiers have been used, namely: K-nearest Neighbors (KNN), Linear Discernment Analysis (LDA), and Ensemble of Classifiers. Results show that the KNN classifier allows performance of 86.01 % in the user's identification system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信