{"title":"开发在线节目推荐系统的新分类算法","authors":"Thomas Meller, Eric Wang, F. Lin, Chunsheng Yang","doi":"10.1109/ELML.2009.19","DOIUrl":null,"url":null,"abstract":"This paper presents two novel nearest-neighbor-like classification algorithms for program recommendation in a Web-based system, which provides a program planning service to academic advisors and students of post-secondary institutions. To evaluate the accuracy of classification for program recommendations generated by our algorithm, a statistical study was conducted through comparing our algorithm against two well-known classification algorithms, the Naïve Bayes algorithm and the J48 algorithm, for making recommendations to students based on their academic history. The study shows that our proposed nearest-neighbor-like algorithms outperform the two well-known classification algorithms in terms of student classification success rate when there is uncertainty present in the data.","PeriodicalId":179973,"journal":{"name":"2009 International Conference on Mobile, Hybrid, and On-line Learning","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New Classification Algorithms for Developing Online Program Recommendation Systems\",\"authors\":\"Thomas Meller, Eric Wang, F. Lin, Chunsheng Yang\",\"doi\":\"10.1109/ELML.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two novel nearest-neighbor-like classification algorithms for program recommendation in a Web-based system, which provides a program planning service to academic advisors and students of post-secondary institutions. To evaluate the accuracy of classification for program recommendations generated by our algorithm, a statistical study was conducted through comparing our algorithm against two well-known classification algorithms, the Naïve Bayes algorithm and the J48 algorithm, for making recommendations to students based on their academic history. The study shows that our proposed nearest-neighbor-like algorithms outperform the two well-known classification algorithms in terms of student classification success rate when there is uncertainty present in the data.\",\"PeriodicalId\":179973,\"journal\":{\"name\":\"2009 International Conference on Mobile, Hybrid, and On-line Learning\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Mobile, Hybrid, and On-line Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELML.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Mobile, Hybrid, and On-line Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELML.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Classification Algorithms for Developing Online Program Recommendation Systems
This paper presents two novel nearest-neighbor-like classification algorithms for program recommendation in a Web-based system, which provides a program planning service to academic advisors and students of post-secondary institutions. To evaluate the accuracy of classification for program recommendations generated by our algorithm, a statistical study was conducted through comparing our algorithm against two well-known classification algorithms, the Naïve Bayes algorithm and the J48 algorithm, for making recommendations to students based on their academic history. The study shows that our proposed nearest-neighbor-like algorithms outperform the two well-known classification algorithms in terms of student classification success rate when there is uncertainty present in the data.