遗传算法中的目标函数分解

K. G. Khoo, P. N. Suganthan
{"title":"遗传算法中的目标函数分解","authors":"K. G. Khoo, P. N. Suganthan","doi":"10.1109/CEC.2002.1006260","DOIUrl":null,"url":null,"abstract":"The genetic algorithm (GA) has been applied to numerous optimization problems since its introduction. Here, information on each element of the solution strings is extracted to improve the GA's performance. We decouple a fitness evaluation function, estimating the fitness contribution by each dimension. Using this information, each dimension within each solution fights for its position in the offspring. A comparison with the standard GA showed that the proposed GA is superior on commonly tested functions.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Objective function decomposition within genetic algorithm\",\"authors\":\"K. G. Khoo, P. N. Suganthan\",\"doi\":\"10.1109/CEC.2002.1006260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic algorithm (GA) has been applied to numerous optimization problems since its introduction. Here, information on each element of the solution strings is extracted to improve the GA's performance. We decouple a fitness evaluation function, estimating the fitness contribution by each dimension. Using this information, each dimension within each solution fights for its position in the offspring. A comparison with the standard GA showed that the proposed GA is superior on commonly tested functions.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1006260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传算法自提出以来,已被应用于许多优化问题。在这里,解字符串的每个元素的信息被提取,以提高遗传算法的性能。我们解耦一个适应度评估函数,估计每个维度的适应度贡献。利用这些信息,每个溶液中的每个维度都在为自己在后代中的位置而战。与标准遗传算法的比较表明,该遗传算法在常用测试函数上优于标准遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective function decomposition within genetic algorithm
The genetic algorithm (GA) has been applied to numerous optimization problems since its introduction. Here, information on each element of the solution strings is extracted to improve the GA's performance. We decouple a fitness evaluation function, estimating the fitness contribution by each dimension. Using this information, each dimension within each solution fights for its position in the offspring. A comparison with the standard GA showed that the proposed GA is superior on commonly tested functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信