最小权值子序列问题

D. Hirschberg, L. Larmore
{"title":"最小权值子序列问题","authors":"D. Hirschberg, L. Larmore","doi":"10.1137/0216043","DOIUrl":null,"url":null,"abstract":"The least weight subsequence (LWS) problem is introduced, and is shown to be equivalent to the classic minimum path problem for directed graphs. A special case of the LWS problem is shown to be solvable in O(n log n) time generally and, for certain weight functions, in linear time. A number of applications are given, including an optimum paragraph formation problem and the problem of finding a minimum height B-tree, whose solutions realize improvement in asymptotic time complexity.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"The least weight subsequence problem\",\"authors\":\"D. Hirschberg, L. Larmore\",\"doi\":\"10.1137/0216043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The least weight subsequence (LWS) problem is introduced, and is shown to be equivalent to the classic minimum path problem for directed graphs. A special case of the LWS problem is shown to be solvable in O(n log n) time generally and, for certain weight functions, in linear time. A number of applications are given, including an optimum paragraph formation problem and the problem of finding a minimum height B-tree, whose solutions realize improvement in asymptotic time complexity.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0216043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0216043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

引入了最小权子序列问题,并证明其等价于有向图的经典最小路径问题。LWS问题的一种特殊情况通常在O(n log n)时间内可解,对于某些权函数,在线性时间内可解。给出了若干应用,包括最优段落形成问题和寻找最小高度b树问题,其解实现了渐近时间复杂度的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The least weight subsequence problem
The least weight subsequence (LWS) problem is introduced, and is shown to be equivalent to the classic minimum path problem for directed graphs. A special case of the LWS problem is shown to be solvable in O(n log n) time generally and, for certain weight functions, in linear time. A number of applications are given, including an optimum paragraph formation problem and the problem of finding a minimum height B-tree, whose solutions realize improvement in asymptotic time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信