稀疏频率数据反演:在近地表实验中的应用

T. Alkhalifah, B. Sun, Y. Choi, Faisal Alonaizi, M. Almalki
{"title":"稀疏频率数据反演:在近地表实验中的应用","authors":"T. Alkhalifah, B. Sun, Y. Choi, Faisal Alonaizi, M. Almalki","doi":"10.3997/2214-4609.201800679","DOIUrl":null,"url":null,"abstract":"With an objective to invert for the subsurface velocity in the near surface rather than developing an image, we substitute the commonly used broadband acquisition scenario with a novel narrow band acquisition at coarse shot locations. We conduct the acquisition of narrow band seismic data, with an effect of 3 simultaneous sources vibrating at different bands (14-15 Hz, 24-25 Hz, and 49-50 Hz) of the frequency spectrum. The separation of the shot gathers corresponding to the simultaneous sources becomes natural as the shots fall in different bands of the frequency spectrum. The narrow band acquisition allows us to inject more energy of these frequencies using the same conventional vibrator sweep time (6 seconds). We mute regions of low signal-to-noise ratio, and then insert the data into a frequency domain waveform inversion algorithm. The inverted model down to 250 meters depth showed structure corresponding to a low velocity zone at around 80 meter depth. For comparison a conventional full sweep acquisition (30-170 Hz) at a dense shot spacing we recorded. We migrated this conventional dataset using the inverted model. The agreement between the inverted model and the image, extracted from the two independent datasets, supports the accuracy of the inverted model.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sparse Frequencies Data Inversion: an Application to a Near Surface Experiment\",\"authors\":\"T. Alkhalifah, B. Sun, Y. Choi, Faisal Alonaizi, M. Almalki\",\"doi\":\"10.3997/2214-4609.201800679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an objective to invert for the subsurface velocity in the near surface rather than developing an image, we substitute the commonly used broadband acquisition scenario with a novel narrow band acquisition at coarse shot locations. We conduct the acquisition of narrow band seismic data, with an effect of 3 simultaneous sources vibrating at different bands (14-15 Hz, 24-25 Hz, and 49-50 Hz) of the frequency spectrum. The separation of the shot gathers corresponding to the simultaneous sources becomes natural as the shots fall in different bands of the frequency spectrum. The narrow band acquisition allows us to inject more energy of these frequencies using the same conventional vibrator sweep time (6 seconds). We mute regions of low signal-to-noise ratio, and then insert the data into a frequency domain waveform inversion algorithm. The inverted model down to 250 meters depth showed structure corresponding to a low velocity zone at around 80 meter depth. For comparison a conventional full sweep acquisition (30-170 Hz) at a dense shot spacing we recorded. We migrated this conventional dataset using the inverted model. The agreement between the inverted model and the image, extracted from the two independent datasets, supports the accuracy of the inverted model.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201800679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201800679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了反演近地表的地下速度,而不是生成图像,我们在粗拍位置用一种新的窄带采集替代了常用的宽带采集方案。我们利用3个震源同时在频谱的不同波段(14-15 Hz、24-25 Hz和49-50 Hz)振动的效果,进行窄带地震数据采集。同时源对应的射束束的分离是自然的,因为射束落在频谱的不同波段。窄带采集允许我们使用相同的传统振动器扫描时间(6秒)注入这些频率的更多能量。我们对低信噪比的区域进行静音处理,然后将数据插入到频域波形反演算法中。250米深度的反演模型显示了80米左右的低速带结构。为了进行比较,我们记录了密集射击间隔下的传统全扫描采集(30-170 Hz)。我们使用倒模型迁移了这个传统的数据集。从两个独立的数据集中提取的倒立模型和图像之间的一致性支持了倒立模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Frequencies Data Inversion: an Application to a Near Surface Experiment
With an objective to invert for the subsurface velocity in the near surface rather than developing an image, we substitute the commonly used broadband acquisition scenario with a novel narrow band acquisition at coarse shot locations. We conduct the acquisition of narrow band seismic data, with an effect of 3 simultaneous sources vibrating at different bands (14-15 Hz, 24-25 Hz, and 49-50 Hz) of the frequency spectrum. The separation of the shot gathers corresponding to the simultaneous sources becomes natural as the shots fall in different bands of the frequency spectrum. The narrow band acquisition allows us to inject more energy of these frequencies using the same conventional vibrator sweep time (6 seconds). We mute regions of low signal-to-noise ratio, and then insert the data into a frequency domain waveform inversion algorithm. The inverted model down to 250 meters depth showed structure corresponding to a low velocity zone at around 80 meter depth. For comparison a conventional full sweep acquisition (30-170 Hz) at a dense shot spacing we recorded. We migrated this conventional dataset using the inverted model. The agreement between the inverted model and the image, extracted from the two independent datasets, supports the accuracy of the inverted model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信