Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo
{"title":"Flyintel——一个基于大脑激发脉冲神经网络的机器人导航平台","authors":"Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo","doi":"10.1109/AICAS.2019.8771614","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network\",\"authors\":\"Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo\",\"doi\":\"10.1109/AICAS.2019.8771614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network
Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.