基于图像的制造过程异常检测混合分类方法

Yee Tat Ng, Xiang Li, Ji-Yan Wu, Van Tung Tran, Wenju Lu
{"title":"基于图像的制造过程异常检测混合分类方法","authors":"Yee Tat Ng, Xiang Li, Ji-Yan Wu, Van Tung Tran, Wenju Lu","doi":"10.1109/IAI55780.2022.9976593","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid classification method for image based anomaly detection is proposed to improve the detection rate from industrial high-dimensional process data. The method involves feature selection with clustering based classification to discover failure patterns for marginal datasets to improve detection accuracy. The proposed hybrid classification method is tested with a real industry data sets. Results show that the proposed hybrid classification method is superior to the conventional classification methods such as multilayer perceptron (MLP) and decision tree in term of anomaly detection accuracy.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Classification Method for Image-based Anomaly Detection in Manufacturing Processes\",\"authors\":\"Yee Tat Ng, Xiang Li, Ji-Yan Wu, Van Tung Tran, Wenju Lu\",\"doi\":\"10.1109/IAI55780.2022.9976593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hybrid classification method for image based anomaly detection is proposed to improve the detection rate from industrial high-dimensional process data. The method involves feature selection with clustering based classification to discover failure patterns for marginal datasets to improve detection accuracy. The proposed hybrid classification method is tested with a real industry data sets. Results show that the proposed hybrid classification method is superior to the conventional classification methods such as multilayer perceptron (MLP) and decision tree in term of anomaly detection accuracy.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高工业高维过程数据的异常检测率,提出了一种基于图像的混合分类方法。该方法通过特征选择和基于聚类的分类来发现边缘数据集的故障模式,以提高检测精度。用实际工业数据集对所提出的混合分类方法进行了验证。结果表明,该方法在异常检测精度方面优于传统的多层感知器(MLP)和决策树等分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Classification Method for Image-based Anomaly Detection in Manufacturing Processes
In this paper, a hybrid classification method for image based anomaly detection is proposed to improve the detection rate from industrial high-dimensional process data. The method involves feature selection with clustering based classification to discover failure patterns for marginal datasets to improve detection accuracy. The proposed hybrid classification method is tested with a real industry data sets. Results show that the proposed hybrid classification method is superior to the conventional classification methods such as multilayer perceptron (MLP) and decision tree in term of anomaly detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信