下肢康复机器人的控制策略

Jiangcheng Chen, Xiaodong Zhang, He Wang, Qiangyong Shi, Rui Li
{"title":"下肢康复机器人的控制策略","authors":"Jiangcheng Chen, Xiaodong Zhang, He Wang, Qiangyong Shi, Rui Li","doi":"10.1109/ICINFA.2014.6932638","DOIUrl":null,"url":null,"abstract":"Robotic devices for functional therapy for paralysis caused by neurologic injury is becoming popular now days. Effective control strategy is a key technical problem in developing a rehabilitation robot. In this paper, different control strategies for different training stages are proposed. Firstly, the rehabilitation process is divided into two stages which corresponding to two kinds of training modes: robot-in-charge and patient-in-charge (passive and active). Then, the position control method is proposed for passive mode as well as the bioelectrical signal (EMG) based control strategy for active training mode. Meanwhile, simulation of the control is conducted and the results proved the correctness of our control method.","PeriodicalId":427762,"journal":{"name":"2014 IEEE International Conference on Information and Automation (ICIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Control strategies for lower limb rehabilitation robot\",\"authors\":\"Jiangcheng Chen, Xiaodong Zhang, He Wang, Qiangyong Shi, Rui Li\",\"doi\":\"10.1109/ICINFA.2014.6932638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic devices for functional therapy for paralysis caused by neurologic injury is becoming popular now days. Effective control strategy is a key technical problem in developing a rehabilitation robot. In this paper, different control strategies for different training stages are proposed. Firstly, the rehabilitation process is divided into two stages which corresponding to two kinds of training modes: robot-in-charge and patient-in-charge (passive and active). Then, the position control method is proposed for passive mode as well as the bioelectrical signal (EMG) based control strategy for active training mode. Meanwhile, simulation of the control is conducted and the results proved the correctness of our control method.\",\"PeriodicalId\":427762,\"journal\":{\"name\":\"2014 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2014.6932638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2014.6932638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前,用于神经损伤引起的瘫痪功能治疗的机器人装置越来越受欢迎。有效的控制策略是康复机器人研制中的关键技术问题。本文针对不同的训练阶段,提出了不同的控制策略。首先,将康复过程分为两个阶段,分别对应两种训练模式:机器人负责和病人负责(被动和主动)。然后,针对被动训练模式提出了位置控制方法,针对主动训练模式提出了基于生物电信号的控制策略。同时进行了控制仿真,结果证明了控制方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control strategies for lower limb rehabilitation robot
Robotic devices for functional therapy for paralysis caused by neurologic injury is becoming popular now days. Effective control strategy is a key technical problem in developing a rehabilitation robot. In this paper, different control strategies for different training stages are proposed. Firstly, the rehabilitation process is divided into two stages which corresponding to two kinds of training modes: robot-in-charge and patient-in-charge (passive and active). Then, the position control method is proposed for passive mode as well as the bioelectrical signal (EMG) based control strategy for active training mode. Meanwhile, simulation of the control is conducted and the results proved the correctness of our control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信